FINAL ADDENDUM II

Intrinsic Remediation
Engineering Evaluation/Cost Analysis
for the FT-002 Site

Plattsburgh Air Force Base New York

Prepared For

Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base
San Antonio, Texas

and
Plattsburgh Air Force Base
New York

DISTRIBUTION STATEMENT A
Approved for Public Release

Approved for Public Release Distribution Unlimited

20000201 073

October 1999

FINAL ADDENDUM II

INTRINSIC REMEDIATION ENGINEERING EVALUATION/COST ANALYSIS FOR THE FT-002 SITE

at

PLATTSBURGH AIR FORCE BASE NEW YORK

October 1999

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
BROOKS AIR FORCE BASE
SAN ANTONIO, TEXAS

and

PLATTSBURGH AIR FORCE BASE NEW YORK

Prepared by:

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

TABLE OF CONTENTS

			Page
LIST	OF ACRONYMS AN	ND ABBREVIATIONS	iii
1.0	Introduction		1
2.0			
2.0		r Flow Direction and Gradient	
		TEX Contamination	
		hlorinated Solvent Contamination	
		on of BTEX	
	2.4.1 O	xidation/Reduction Potential	23
		issolved Oxygen	
		itrate + Nitrite	
		errous Iron	
	2.4.5 Su	ılfate	30
		ethane	
	2.5 Biodegradati	ion of Chlorinated Solvents	30
		hene	
	2.5.2 C	hloride	33
3.0	Conclusions and Re	commendations	33
4.0	References		35
Appe	ndix A - 1998 Analyt		
		LIST OF TABLES	
No.		Title	Page
1		dwater Analytical Methods November 1998	
2		tion Data	
3	Summary of Fuel H	Iydrocarbons in Groundwater	7
4		nated Solvents in Groundwater	
5	Groundwater Quali	ty Data for Geochemical Indicators	24
J	Groundwater Quair	ty Data tot Occidentical mulcators	

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

No.	Title	Page
1	Groundwater Elevations November 1998	6
2	Total Dissolved BTEX Isopleth Maps	
3	TCE Isopleth Maps	20
4	cis-1,2-DCE Isopleth Maps	
5	Vinyl Chloride Isopleth Maps	
6	Dissolved Oxygen Isopleth Maps	
7	Ferrous Iron Isopleth Maps	
8	Sulfate Isopleth Maps	
9	Methane Isopleth Maps	

LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

AFCEE Air Force Center for Environmental Excellence BTEX benzene, toluene, ethylbenzene, and xylenes

CAH chlorinated aliphatic hydrocarbon

1,1-DCE 1,1-dichloroethene cis-1,2-DCE cis-1,2-dichloroethene dissolved oxygen

EE/CA Engineering Evaluation/Cost Analysis

ft/ft foot/foot

LTM long-term monitoring $\mu g/L$ micrograms per liter mg/L milligrams per liter

MTBE methyl tertiary-butyl ether

mV millivolts

NRMRL National Risk Management Research Laboratory

OHM Remediation Service Corporation

ORP oxidation-reduction potential
Parsons ES Parsons Engineering Science, Inc.

PCE tetrachloroethene
redox oxidation-reduction
TCE trichloroethene
TMB trimethylbenzene
TOC total organic carbon
trans-1,2-DCE trans-1,2-dichloroethene

USEPA US Environmental Protection Agency

VC vinyl chloride

FINAL ADDENDUM II

INTRINSIC REMEDIATION ENGINEERING EVALUATION/COST ANALYSIS FOR THE FT-002 SITE

1.0 INTRODUCTION

This report was prepared for the Air Force Center for Environmental Excellence (AFCEE) by Parsons Engineering Science, Inc. (Parsons ES) as a second addendum (Addendum II) to the *Final Intrinsic Remediation Engineering Evaluation/Cost Analysis* (EE/CA) (Parsons ES, 1995). The EE/CA was conducted to evaluate the use of natural attenuation with long-term monitoring (LTM) for remediation of fuel hydrocarbons dissolved in groundwater at site FT-002, Plattsburgh Air Force Base (AFB), New York. The report also provided an assessment of the concentration and distribution of chlorinated aliphatic hydrocarbons (CAHs) dissolved in groundwater.

The EE/CA was based on sampling data collected during December 1993, and the first addendum (Parsons ES, 1997) reported sampling data from August 1995 and May 1996. This second addendum summarizes the results of a subsequent sampling event performed in November 1998 by researchers from the US Environmental Protection Agency (USEPA) National Risk Management Research Laboratory (NRMRL), Subsurface Protection and Remediation Division. The main emphasis of this summary is to evaluate changes in the magnitude and extent of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) and CAHs in groundwater, and in the dominant natural attenuation mechanisms. Comparison of the 1998 data with results, calculations, and predictions presented in the EE/CA and the first addendum provides the basis for this evaluation.

Former fire protection training Site FT-002, formerly designated FT-001, is located in the northwest corner of the Base and encompasses an area approximately 700 feet wide and 800 feet long. The site is located approximately equidistant (500 feet) between the Plattsburgh AFB runway on the east and the Base boundary on the west. The source of contamination at Site FT-002 is most likely unburned fuels and waste solvents released during fire training exercises that occurred from the mid-1950s until 1989. To date, remediation at Site FT-002 has consisted primarily of LNAPL recovery and bioventing with soil vapor extraction (SVE), using systems installed in each of four former fire training pits. Additional site information, including site background, geology, and hydrogeology is provided in the EE/CA (Parsons ES, 1995).

2.0 RESULTS

In November 1998, researchers from the USEPA NRMRL measured groundwater levels at 11 monitoring wells/points, and collected groundwater samples from 15 monitoring wells/points at Site FT-002. Samples were analyzed in the field for oxidation-reduction potential (ORP), dissolved oxygen (DO), temperature, pH,

conductivity, alkalinity, sulfide, and ferrous iron. Additional sample volumes were analyzed at the USEPA NRMRL in Ada, Oklahoma for BTEX, trimethylbenzenes (TMBs), methyl tertiary-butyl ether (MTBE), total fuel carbon, CAHs, chlorobenzenes, ammonia, nitrate + nitrite, sulfate, chloride, methane, ethane, ethene, and total organic carbon (TOC). Analytical methods for November 1998 are summarized in Table 1.

2.1 Groundwater Flow Direction and Gradient

Groundwater elevation data are summarized in Table 2, and groundwater elevations for May 1995 and November 1998 are contoured on Figure 1. In November 1998, groundwater in the vicinity of Site FT-002 was inferred to flow toward the southeast, at a gradient of approximately 0.01 foot per foot (ft/ft). Downgradient from the source area, the flow direction changes toward the south-southeast, parallel to the flightline and toward a swale that intermittently contains surface water. The groundwater elevations, gradients, and flow directions measured in November 1998 are similar to those observed in December 1993 and May 1995, as described in the EE/CA and the first addendum (Parsons ES, 1995 and 1997).

2.2 Dissolved BTEX Contamination

BTEX compounds were detected in groundwater samples from 9 of the 15 monitoring wells/points sampled in November 1998. A summary of analytical results for BTEX, total fuel carbon, TMBs, and MTBE is contained in Table 3. Concentration isopleth maps for total BTEX in groundwater for December 1993, August 1995, May 1996, and November 1998 are presented on Figure 2.

Temporal and spatial changes in BTEX concentrations indicate that dissolved BTEX concentrations in the source area are decreasing. This is demonstrated by the marked decrease in the total dissolved BTEX concentrations at wells MW-02-005 and MW-02-006 since the original sampling event in December 1993. Both of these wells are located immediately downgradient from the original source area. Samples from monitoring well MW-02-006 have displayed the steadiest decrease in BTEX At this location, BTEX concentrations decreased from 1,250 concentrations. micrograms per liter (µg/L) in December 1993, to 538 µg/L in August 1995, to not detected in November 1998. At well MW-02-005, BTEX concentrations decreased from 154 µg/L in December 1993 to not detected in November 1998. This well was not sampled in August 1995 or May 1996. Approximately 900 feet downgradient from the source area, total BTEX concentrations decreased from 3,060 µg/L in August 1995 to 1,583 ug/L in November 1998 in groundwater samples collected from monitoring well MW-310. The reductions in dissolved BTEX concentrations near the source area are most likely attributable to operation of the bioventing and SVE systems in the fire training pit source areas, and appear to have caused the BTEX plume to detach from the source area.

As depicted on Figure 2, the November 1998 BTEX plume appears to extend further downgradient that the earlier plumes. Comparison of sampling results for downgradient well MW-02-043 for December 1993 and November 1998 suggests that the BTEX plume expanded at least slightly during this period. However, well MW-02-43 was not sampled in 1995 or 1996, which may have affected isopleth construction for

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL METHODS NOVEMBER 1998

FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

Analyte	Method	Field (F) or Fixed-Base Laboratory (L)
Oxidation-Reduction Potential	Direct Reading Meter	F
Dissolved Oxygen	Direct Reading Meter	F
Conductivity	Direct Reading Meter	F
Temperature	Direct Reading Meter	F
pH	Direct Reading Meter	F
Ferrous Iron (Fe ²⁺)	Colorimetric, Hach® Method 8146, or equivalent	F
Sulfide	Colorimetric, Hach® Method 8131, or equivalent	F
Alkalinity (Carbonate [CO ₃ ² -]	Titrimetric, Hach® Method 8221, or equivalent	F
and Biocarbonate [HCO3])		
Nitrate + Nitrite	Lachat FIA Method 10-107-04-2-A	L
Ammonia	Lachat FIA Method 10-107-06-1-A	L
Chloride	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane and Ethene	RSKSOP-175 ^{a/} and RSKSOP-194	L
Total Organic Carbon	RSKSOP-102	L
BTEX, TMBs, MTBE ^{b'} and Total Fuel Carbon	RSKSOP-133	L
CAHs ^{c/} and Chlorobenzenes	RSKSOP-148	L

^{a/} RSKSOP = Robert S. Kerr Laboratory (now known as NRMRL) standard operating procedure.

^{b/} BTEX = Benzene, toluene, ethylbenzene, and xylenes; TMBs = trimethylbenzenes; MTBE = methyl tertiary-butyl ether.

^c/ CAHs = Chlorinated aliphatic hydrocarbons.

TABLE 2
GROUNDWATER ELEVATION DATA
FT-002
INTRINSIC REMEDIATION EE/CA ADDENDUM II
PLATTSBURGH AFB, NEW YORK

			-	Datum Elevation	Depth to Groundwater	Groundwate Elevation
Location	Easting	Northing	Date	(ft amsl) ^{a/}	(feet below datum)	(ft amsl)
MW-02-005	722393.85	1700306.02	11/98	250.92	NM ^{b/}	NM
	722393.85	1700306.02	5/95	250.92	34.45	216.47
	722393.85	1700306.02	12/93	250.92	NM	NM
MW-02-006	722521.64	1700372.17	11/98	245.80	28.90	216.90
	722521.64	1700372.17	5/95	245.80	30.18	215.62
	722521.64	1700372.17	12/93	245.80	NM	NM
MW-02-007	722521.41	1700354.16	11/98	248.69	28.60	220.09
	722521.41	1700354.16	5/95	248.69	NM	NM
	722521.41	1700354.16	12/93	248.69	32.40	216.29
MW-02-008	NM	NM	5/95	257.40	40.99	216.41
MW-02-011	NM	NM	5/95	258.32	42.51	215.81
MW-02-014	722146.23	1700554.89	12/93	254.01	NM	NM
MW-02-015	722023.54	1700547.37	5/95	256.25	40.14	216.11
	722023.54	1700547.37	12/93	256.25	40.03	216.22
MW-02-019	722797.86	1700166.45	11/98	227.93	11.50	216.43
	722797.86	1700166.45	5/95	227.93	14.48	213.45
	722797.86	1700166.45	12/93	227.93	14.85	213.08
MW-02-020	722807.69	1700165.37	12/93	230.16	13.15	217.01
MW-02-021	723492.61	1698394.41	11/98	193.85	4.20	189.65
	723492.61	1698394.41	5/95	193.85	4.57	189.28
	723492.61	1698394.41	12/93	193.85	3.99	189.86
MW-02-022	NM	NM	NM	NM	4.20	NM
MW-02-026	721429.01	1700757.23	5/95	274.06	53.73	220.33
	721429.01	1700757.23	12/93	274.06	56.40	217.66
MW-02-027	721430.77	1700751.15	12/93	274.22	53.05	221.17
MW-02-030	722808.70	1700172.70	12/93	229.55	14.60	214.95
MW-02-031	722098.87	1700498.83	5/95	250.81	34.11	216.70
	722098.87	1700498.83	12/93	250.81	33.88	216.93
MW-02-040	724351.63	1699361.02	11/98	209.02	NM	NM
	724351.63	1699361.02	5/95	209.02	9.92	199.10
	724351.63	1699361.02	12/93	209.02	9.40	199.62

TABLE 2 (Continued) GROUNDWATER ELEVATION DATA FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

Location	Easting	Northing	Date	Datum Elevation (ft amsl) ^{a/}	Depth to Groundwater (feet below datum)	Groundwater Elevation (ft amsl)
MW-02-041	724363.83	1699363.58	11/98	209.05	7.95	201.10
	724363.83	1699363.58	12/93	209.05	8.33	200.72
MW-02-042	724368.43	1699352.83	11/98	208.76	7.22	201.54
	724368.43	1699352.83	12/93	208.76	7.90	200.86
MW-02-043	724953.42	1698070.12	11/98	185.47	2.90	182.57
	724953.42	1698070.12	12/93	185.47	3.45	182.02
MW-02-044	725474.64	1697178.35	12/93	190.21	7.62	182.59
MW-04-005	NM	NM	5/95	190.96	2.32	188.64
MW310	NM	NM	11/98	NM	10.50	NM
MW336	NM	NM	11/98	NM	9.90	NM
44-PLT-W1	NM	NM	11/98	NM	6.20	NM
45-PLT-W1	NM	NM	11/98	NM	6.10	NM
84B	722267.00	1700360.00	12/93	241.52	25.50	216.02
84E	722437.00	1700360.00	12/93	241.52	28.00	213.52
84F	722437.00	1700360.00	12/93	244.26	28.50	215.76
84M	722502.00	1700270.00	12/93	243.40	29.00	214.40
84O	722723.00	1700310.00	12/93	234.10	21.60	212.50

a/ ft amsl = feet above mean sea level.

 $^{^{}b/}$ NM = not measured.

TABLE 3
SUMMARY OF FUEL HYDROCARBONS IN GROUNDWATER
FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

ļ	$\mathrm{MTBE}^{\mathrm{a}'}$	(μg/L)	ND	NA®	ND	NA	NA	ND	NA	NA	NA	ND	BLQ	NA	NA	NA A	NA	ND	NA	2.5	ΝΑ	NA	NA	NA	BLQ	NA	NA	NA
1,2,3-	TMB	(µg/L)	ND	7.65	ND	50.3	306	ND	< 0.5	189	145	ND	198	62.2	66.3	93.2	157	ND	< 0.5	QN	QN	1.66	< 0.5	< 0.5	ND	ND	ND	< 0.5
1,2,4-	TMB	(µg/L)	ND	5.48	QN	101	588	QN	< 0.5	352	255	ND	515	111	111	179	322	ND	< 0.5	ND	ND	1.96	< 0.5	1.1	ΩN	1.4	Ω	< 0.5
1,3,5-	$TMB^{a'}$	(µg/L)	ND	2.57	ND	38.6	180	N Q	< 0.5	111	93	ND	202	39.8	45	62.9	116	ND	< 0.5	ND	ΩN	1.19	< 0.5	< 0.5	1.3	ND	< 1.0	< 0.5
Total	\mathbf{BTEX}^{ω}	(µg/L)	ND	154	ND	538	1,250	ND	< 0.5	6,010	1,400	7.9	3,050	626	1,020	2,400	3,140	ND	< 0.5	1.1	<1.0	6.24	0.997	46.7	2.7	2.3	2.8	1.93
Total	Xylenes	(µg/L)	ND	46.1	QN	321	866	ND	< 0.5	3,300	806	5.7	2,040	454	427	1,320	2,140	QN	< 0.5	ND	QN	6.24	0.997	9.2	ND	ND	ND	< 0.5
	o-xylene	(µg/L)	QN	1.27	QN	73.4	283	ND	< 0.5	715	213	ND	414	75.8	93	263	419	ND	< 0.5	ND	ND	2.55	< 0.5	1.48	ND	ND	ND	< 0.5
	m-xylene	(µg/L)	QN	69.7	BLQ"	165	515	BLQ	< 0.5	1,790	512	3.7	1,080	164	178	703	1,190	ND	< 0.5	ND	ND	3.69	0.997	4.72	ND	ND	ND	< 0.5
	p-xylene	(µg/L)	QN PA	37.1	QN	87.8	200	ND	< 0.5	795	183	2	550	214	156	352	534	QN	< 0.5	ND	ND	< 0.5	< 0.5	3	ND	QN	ND	< 0.5
Ethyl-	benzene	(µg/L)	ΩN	107	QN	179	144	ON	< 0.5	808	191	2.2	577	303	338	433	563	QN	< 0.5	ND	ND	< 0.5	< 0.5	19.9	ND	N	ND	< 0.5
	Toluene	(µg/L)	ND	< 0.5	QN	35	101	QN	< 0.5	1,560	303	QN	255	107	109	327	148	QN	< 0.5	ND	< 1.0	< 0.5	< 0.5	1.06	QN	QN	QN	< 0.5
	Benzene	(ng/L)	ND	1.27	QN	2.7	7.32	N ON	< 0.5	342	30.2	QN QN	170	115	148	321	286	QN	< 0.5	1:1	ND	< 0.5	< 0.5	16.5	2.7	2.3	2.8	1.93
Total	Fuel Carbon	(μg/L) ^ν	ND^{e}	844	ND	NA A	3,820	ND	BLQ	9,940	2,800	12.4	6,330	ΑN	Ϋ́	4,410	7,560	QN	BLQ	71	NA	25.7	BLQ	145	95.6	Y Y	N A	92
	Sample	Date	11/98	12/93	11/98	8/95	12/93	11/98	12/93	12/93	12/93	11/98	11/98	96/5	8/95	12/93	12/93	11/98	12/93	11/98	8/95	12/93	12/93	12/93	11/98	96/5	8/95	12/93
		Sample Location	MW-02-005		MW-02-006			MW-02-007		MW-02-014	MW-02-015	MW-02-017	MW-02-019				MW-02-020	MW-02-021		MW-02-022	MW-02-026		MW-02-027	MW-02-030	MW-02-040			

TABLE 3 (Continued) SUMMARY OF FUEL HYDROCARBONS IN GROUNDWATER FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

		Total			Ethyl-				Total	Total	1,3,5-	1,2,4-	1,2,3-	
	Sample	Fuel Carbon	Benzene	Toluene	benzene	p-xylene	m-xylene	o-xylene	Xylenes	$\mathrm{BTEX}^{a'}$	$TMB^{\mathfrak{g}}$	TMB	TMB	$MTBE^{a'}$
Sample Location	Date	$(\mu \mathrm{g/L})^{\!\scriptscriptstyle M}$	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW-02-041	11/98	594	36.3	QN	ND	ND	9.0	QN	9.0	36.9	4.2	6.0	ND	BLQ
	96/5	NA	11.7	QN	QN QN	QN	Q.	ND	ND	11.7	N Q	ND	Q	Y Y
	8/95	NA	17.6	<1.0	QN	ND	QN Q	QN	ND	17.6	< 1.0	ND ND	< 1.0	Y Y
	12/93	1,850	40.7	< 0.5	< 0.5	< 0.5	< 0.5	0.914	0.914	41.6	< 0.5	< 0.5	< 0.5	NA
MW-02-042	11/98	82.8	66.7	QN	QN ON	QN	QN.	ND	ND	2.99	N Q	ND	QN	ΩN
	96/9	NA	49.1	ND	N	N Q	Q	ND	ND	49.1	ND	Q	Q	NA A
	8/95	NA	72	< 1.0	QN.	< 1.0	1.0	ND	1.0	73.0	< 1.0	< 1.0	N	Y Y
	12/93	469	56.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	56.9	< 0.5	< 0.5	< 0.5	NA
MW-02-043	11/98	571	8.1	QN	QN	QN	QN	QN	ND	8.1	ND	ND	NO	ND
	12/93	ND	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	AN
MW-02-044	12/93	QN	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
MW-108	5/96	NA	261	1,660	968	092	2,230	789	3,780	009'9	132	472	224	NA
	8/95	NA	1,900	6,620	1,540	1,390	3,700	1,640	6,730	16,800	323	949	485	NA AN
MW-310	11/98	2,810	123	222	383	308	422	125	855	1,580	58.9	168	75.5	2.0
	96/5	NA	512	1,200	564	469	1,130	323	1,920	4,200	68	254	120	Y Y
	8/95	NA	424	8.29	445	362	871	280	1,510	3,060	116	248	127	NA
MW-336	11/98	48.4	∞	QN	6.3	QN	QN	ND	ND	14.3	ND	ND	ND	ND
	2/96	NA	9.2	< 1.0	0.9	N Q	ND	ND	ND	15.2	ND	N	QN	Ϋ́
	8/95	NA AN	20.3	< 1.0	12.5	N	ND	ND	ND	32.8	ND	QN	ND	NA
25-PLT-W2	8/95	NA	Q.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
26-PLT-W3	8/95	NA	ND	QN	QN	ND	ND	ND	ND	ND	ND	QN	QN	NA
27-PLT-W4	8/95	NA	QN	< 1.0	ΩN	QN	ND	ND	ND	<1.0	< 1.0	ND	6.0	NA
28-PLT-W4	8/95	NA	QN	< 1.0	QN.	QN	< 1.0	ND	<1.0	<2.0	ND	ND	ND	NA
29-PLT-W5	8/95	NA	QN	< 1.0	QN	QN	ND	ND	ND	<1.0	ND	QV	ND	NA
30-PLT-W6	8/95	AN	Q.	< 1.0	QN	ND	ND	ND	ND	<1.0	ND	ND	ND	NA
31-PLT-W11	8/95	NA	ND	< 1.0	ND	QN	ND	ND	ND	<1.0	QN	ND	QN	NA

TABLE 3 (Continued) SUMMARY OF FUEL HYDROCARBONS IN GROUNDWATER FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

	MTBE ^{a/}	(µg/ಒ)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA
1,2,3-	TMB	(1/8rl)	S	QN	ΩN	QN	NO	QN	QN	ND	ND	ND	ND	ND	QN	< 1.0	ND	ND	QN	ND	ΩN	ND	ND	QN	11.4	13.2	ND	QN
1,2,4-	TMB	(7/8H)	QN	QN	ND	ND	ND	QN	ΩN	ND	ND	ND	ND	ND	ND	6.0	ND	QN	QN	ND	ND	NΩ	ΩN	ND	ND	2.8	ND	ND
1,3,5-	$TMB^{a'}$	(1/gh)	S	QN	QN Q	1.2	ND	ND	Ω	< 1.0	ND	ND	ND	ND	ND	6.0	ND	ΩN	QN	ND	ND	ND	N Q	QN	2.9	6.7	ND	QN
Total	$BTEX^{a'}$	(µg/L)	QN	<1.0	4.1	13.7	39.8	39.9	1.7	2.2	2.5	<1.0	<2.0	<1.0	6.0	<1.0	<1.0	<1.0	QN	QN	ND	ND	QN	<1.0	159	262	3.9	<1.0
Total	Xylenes	(µg/L)	Q	ND	1:1	1.7	QN	ND	ND	ND	QN	QN	Q.	ND	ND	QN	ΩN	Q.	Q.	N Q	ND	QN	ND ND	ND	4.3	37.1	1.5	ND
	o-xylene	(µg/L)	ND	ND	1.1	1.7	QN	ND	QN	ND	ND	QN	QN	QN	QN	QN	QN	QN	QN	ND	N Q	QN	ND	ND	2.2	14.1	< 1.0	QN
	m-xylene	(µg/L)	ND	ND	QN	ND	QN	ND	ND	N	QN	QN	QN	QN	QN	QN	QN	QN	BLQ	N	QN	QN	N Q	ND	QN.	ND	1.5	QN
	p-xylene	(µg/L)	ND	ND	QN	QN	QN	ND	QN	ND	QN	QN	QN	ON	QN	QN	QN	QN	QN	QN	ND	QN	Q	QN	2.1	23	< 1.0	QN
Ethyl-	benzene	(μg/L)	ND	ND	QN	QN	QN	QN	QN	Q	QN	QN	QN.	Q.	QN	Ð	QN	QN	BLQ	S	QN	ΩN	QN	QN	48.8	62.3	< 1.0	QN
	Toluene	(µg/L)	ND	< 1.0	QN	< 1.0	< 1.0	< 1.0	QN	Q	< 1.0	< 1.0	< 1.0	< 1.0	6.0	< 1.0	< 1.0	< 1.0	Q.	QN	QN	QN	QN	< 1.0	7.5	34	2.4	< 1.0
	Benzene	(µg/L)	ND	ND	3.0	12	39.8	39.9	1.7	2.2	2.5	QN	< 1.0	Q.	Ð.	Q	QN	Q.	QN	ND	ND	QN	QN	QN	8.86	129	QN	ND
Total	Fuel Carbon	(μg/L) ^{6/}	NA	NA	NA	Z	NA	NA	NA	N A	NA	AN	NA	NA	NA N	Ϋ́Z	Ϋ́Z	Ϋ́	QN	Ϋ́Z	Z	ND	ZA	NA	NA	Z	NA	NA
	Sample	Date	96/5	8/95	96/5	8/95	96/5	8/95	96/5	8/95	8/95	8/95	8/95	8/95	8/95	8/95	8/95	8/95	11/98	2/96	8/95	11/98	2/96	8/95	96/5	8/95	8/95	8/95
		Sample Location	32-PLT-W12		33-PLT-W12		34-PLT-W12		35-PLT-W13		36-PLT-W14	37-PLT-W15	38-PLT-W15	39-PLT-W16	40-PLT-W7	41-PLT-W10	42-PI.T-W9	43-PI.T-W9	44-PLT-W1			45-PLT-W1			46-PLT-W8		47-PLT-W22	49-PLT-W22

TABLE 3 (Continued) SUMMARY OF FUEL HYDROCARBONS IN GROUNDWATER

FT-002 INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

		Total			Ethyl-				Total	Total	1,3,5-	1,2,4-	1,2,3-	
	Sample	Fuel Carbon	Benzene	Toluene	benzene	p-xylene	m-xylene	o-xylene	Xylenes	$BTEX^{2}$	${ m TMB}^{a'}$	TMB	TMB	$MTBE^{a'}$
Sample Location	Date	(μg/L) ^ν	(µg/L)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
55-PLT-W17	8/95	NA	< 1.0	1.3	ΩN	QN	ND	ND	ND	1.3	ND	ND	ND	NA
56-PLT-W17	8/95	NA	QN	< 1.0	Ð.	Q.	< 1.0	ND	<1.0	<2.0	ND	ND	ND	NA
57-PLT-W17	8/95	NA	QN	< 1.0	ΩN	ND	ND	ND	ND	<1.0	ND	ND	ND	NA
58-PLT-W18	8/95	NA	QN	1.9	ΩN	ND	1.0	ND	1.0	2.9	ND	ND	ND	NA
59-PLT-W19	96/9	NA	Q.	QN ON	Ð	QN	QN	ND	QN	ND	ND	ND	ND	NA
	8/95	NA	N Q	1.0	ND	ND	ND	ND	ND	1.0	ND	ND	ND	NA
60-PLT-W19	96/9	NA	QN	ND	ND	QN	ND	ND	ND	ND	QN	ΩN	ND	NA V
	8/95	NA	ND	QN	ND	Q	N	ND	ND	ND	ND	ND	ND	NA
61-PLT-W19	96/5	NA	QN	Q.	ΩN	QN	QN	ND	QN	ND	ND	ND	ND	NA
	8/95	VA	QN	< 1.0	N Q	QN	ND	ND	ND	<1.0	< 1.0	ND	ND	NA
63-PLT-W20	96/5	NA	QN	Ð	QN	QN	ND	QN	ND	ND	1.2	ND	ND	NA
	8/95	NA	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	ΩN	ΩN	NA
68-PLT-W21	8/95	NA	ND	3.6	ND	ND	ND	ND	ND	3.6	ND	ND	ND	NA
69-PLT-W21	8/95	NA	ND	< 1.0	ND	ND	ND	ND	ND	<1.0	ND	ND	ND	NA
84DA	96/5	NA	191	126	326	215	150	64.1	429	1,042	43.2	123	67.4	NA
	8/95	NA	333	380	256	424	828	307	1,590	2,830	6.96	203	104	NA
84DB	96/5	NA	456	1,390	705	571	1,490	999	2,630	5,180	82.2	264	133	Z A
	8/95	NA	619	1,640	1,060	1,110	1,930	995	4,040	7,350	193	465	228	NA
84DC	96/5	NA	39.2	22.2	64.1	19.4	2.9	8.1	30.4	156	ND	0.9	14.3	Ϋ́
	8/95	NA	10.6	11.3	14.4	5.1	9.4	4.1	18.6	54.9	1.4	2.4	2.3	ΥN
84DD	96/5	ΑN	489	845	809	501	1,140	315	1,960	3,900	6.66	280	129	ΝΑ
	8/95	Ϋ́Z	435	793	646	478	942	249	1,670	3,540	123	243	122	NA
84DF-22	96/5	NA	2.8	< 1.0	ND	6.0	1.6	1.1	3.6	6.4	ND	1.4	N	Y Z
84DF-34	96/9	NA	67.5	14.6	1.1	ND	ND	5.4	5.4	9.88	2.0	ND	6.7	NA
84B (207.22) ⁽¹	12/93	298	71	52.9	16.2	8.53	24.7	14.9	48.1	188	< 0.5"	2.24	2.46	Ϋ́
84B (186.02)	12/93	BLQ	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	Y Z

SUMMARY OF FUEL HYDROCARBONS IN GROUNDWATER TABLE 3 (Continued) FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

		Total			Ethyl-				Total	Total	1,3,5-	1,2,4-	1,2,3-	
	Sample	Fuel Carbon	Benzene	Toluene	benzene	p-xylene	m-xylene	o-xylene	Xylenes	$BTEX^{a'}$	${\sf TMB}^{a'}$	TMB	TMB	$MTBE^{a'}$
Sample Location	Date	(μg/L) ^ω	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
84E (210.52)	12/93	3,060	264	525	354	303	671	268	1,240	2,390	54	149	9.09	NA V
84E (190.52)	12/93	7,560	448	944	909	553	626	448	1,980	3,980	78.6	227	120	ΝΑ
84E (174.52)	12/93	74.3	9.99	< 0.5	7.26	< 0.5	< 0.5	< 0.5	< 0.5	13.9	< 0.5	< 0.5	< 0.5	NA
84F (207.26)	12/93	2570	178	443	263	255	374	249	878	1,760	57.4	159	80.7	NA
84F (197.26)	12/93	3,360	161	363	250	219	461	164	844	1,620	29.7	97.1	49.6	NA
84F (192.26)	12/93	1,930	83.4	107	166	136	226	78.2	440	197	17.3	9.59	33.2	NA
84F (177.26)	12/93	53.1	1.59	< 0.5	11.3	< 0.5	< 0.5	< 0.5	< 0.5	12.9	< 0.5	< 0.5	< 0.5	NA
84M (203.4)	12/93	4,300	183	277	449	480	1,010	352	1,840	2,750	9.88	242	130	NA
84M (183.4)	12/93	124	16.3	1.03	15.7	6.25	< 0.5	< 0.5	< 0.5	39.3	< 0.5	< 0.5	< 0.5	NA
84N (204.15)	12/93	4,620	416	1,090	488	429	905	379	1,710	3,700	70.8	198	9.66	NA
84N (184.15)	12/93	4,200	287	241	318	278	209	223	1,110	1,950	37.8	102	56.8	NA
840 (203.1)	12/93	3,370	298	309	329	294	574	244	1,110	2,050	56.9	149	71.9	Y Y
840 (188.1)	12/93	3,280	242	78.7	273	233	512	193	938	1,530	32.6	6.68	20	NA
a party - D	talmone other		lance. TA/D -	trimothy lhon		- methyl tert	ne. MTDE - methyl tertiany-hittyl ether	Je.						

² BTEX = Benzene, toluene, ethylbenzene and xylenes; TMB = trimethylbenzene; MTBE = methyl tertiary-butyl ether.

 $^{^{}b'}$ $\mu g/L = Micrograms per liter.$ $^{o'}$ ND = Not Detected.

 $^{^{}d'}$ NA = Not analyzed.

 $^{^{}e^\prime}$ BLQ = Below Limit of Quantification. p Sample collected with cone-penetrometer apparatus at indicated elevation in feet above mean sea level.

these sampling events. Data for wells MW-02-040, -041, and -042 suggest that the plume may be at steady-state equilibrium. Continued remediation of the source area should cause the plume to diminish in the future.

Comparisons between the extent of the dissolved BTEX plume between December 1993 and November 1998 and model predictions presented in the EE/CA are inappropriate because predictions were based on a simulated BTEX plume calibrated to the estimated extent of the December 1993 BTEX plume. Subsequent monitoring data suggest that the December 1993 plume likely extended at least 1,200 feet further downgradient than estimated in the EE/CA. Therefore, model predictions of plume migration are probably inaccurate, because the leading edge of the plume was not sufficiently characterized in December 1993. However, the observed decrease in dissolved BTEX concentrations in the source area is consistent with the observation, made in Section 6 of the EE/CA, that attenuation of the BTEX plume can be enhanced by engineered source removal activities.

2.3 Dissolved Chlorinated Solvent Contamination

The CAHs trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride (VC) were detected in groundwater samples collected during each of the four sampling events. Tetrachloroethene (PCE) was detected in 1995, 1996, and 1998, but was not targeted for analysis in 1993. Concentrations of CAHs detected in groundwater samples collected since December 1993 are presented in Table 4. The highest CAH concentration in November 1998 was measured at MW-02-043, the sampling location farthest downgradient from the source area.

Concentrations of total CAHs in 6 of the 15 groundwater samples analyzed for CAHs in November 1998 have decreased over time, concentrations of total CAHs in 2 of these samples have increased over time, and CAH levels in 5 samples have remained relatively constant or have fluctuated. The remaining two wells were not sampled prior to November 1998; therefore, temporal trends cannot be discerned. Five of the six wells that showed decreases in total CAH concentrations are located near the original source zone. These wells include MW-02-005, MW-02-006, MW-310, MW-336, and MW-44-PLT-W1. The groundwater sample collected from monitoring well MW-310 in November 1998 showed the largest reduction, to a total CAH concentration of 1,580 μ g/L. This represents an 85-percent decrease from the May 1996 total CAH concentration of 10,900 μ g/L, and a 90-percent decrease from the August 1995 concentration of 15,900 μ g/L.

Four of the five sampled monitoring wells (MW-02-040, MW-02-041, MW-02-042, and MW-02-043) that are located farther downgradient from the original source zone have evidenced increasing or relatively stable total CAH concentrations over time. Monitoring well MW-02-041 evidenced the highest total CAH concentration in November 1998 (4,240 μ g/L). Monitoring well MW-02-043 also evidenced a high total CAH concentration in November 1998 (3,000 μ g/L), and was the sampling location furthest downgradient from the original source zone. The relatively elevated CAH concentrations at this downgradient well may indicate that a slug of higher CAH concentrations, originating at the fire training area, is migrating southeastward at the

TABLE 4
SUMMARY OF CHLORINATED SOLVENTS IN GROUNDWATER
FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

								Total		
					cis-1,2-	trans-1,2-	Vinyl	Chlorinated	1,3-dichloro-	1,2-dichloro-
	Sample	$PCE^{a'}$	$TCE^{b'}$	$1,1$ -DCE $^{c'}$	DCE	DCE	Chloride	Ethenes	benzene	benzene
Sample Location	Date	$(\mu g/L)^w$	(µg/L)	(µg/L)	(µg/L)	(hg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW-02-005	11/98	ND	ND	QN	ND	QN	ND	ND	ND	ND
	12/93	"AN	9.0	NA A	4.0	<0.5	<0.5	4.6	NA	NA
MW-02-006	11/98	QN	ND	QN	QN	ND	ND	QN	ND	ND
	8/95	ND	< 1.0	QN	23	ND	ND	23	NA	NA
	12/93	NA	9.0	NA	28.7	<0.5	<0.5	29.3	NA	NA
MW-02-007	11/98	QN	QN	QN	QN	ND	ND	QN	ND	N Q
	12/93	NA	<0.5	ZA	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-02-014	12/93	NA	1,030	ΝΑ	9,050	<0.5	4.5	10,100	NA	NA
MW-02-015	12/93	NA	1,330	NA	110	<0.5	<0.5	1,440	NA	NA
MW-02-017	11/98	2.1	24.9	QN	1.5	ND	ND	28.5	ND	QN
MW-02-19	11/98	ND	19.1	5	1,460	1.9	216	1,700	ND	N Q
	2/96	< 1.0	6.7	4.9	63.6	1.2	782	858	ND	2.9
	8/95	ND	< 1.0	<1.0	157	ND	414	571	V	NA
	12/93	NA	1.9	NA	3,540	<0.5	384	3,930	NA	NA
MW-02-021	11/98	ND	< 1.0	ND	1.2	QN	ND	1.2	<1.0	QN
	12/93	NA	4.6	NA	2	<0.5	<0.5	9.9	NA	NA
MW-02-022	11/98	ND	4.2	QX	8.3	ND	ND	12.5	1.8	<1.0
MW-02-026	8/95	ND	QN	QN	QN	QN	ND	QN	NA	NA V
	12/93	N A	<0.5	NA	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-02-027	12/93	NA	<0.5	NA	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-02-030	12/93	NA	7.67	NA	185	0.7	<0.5	265	NA	NA
MW-02-040	11/98	QN	2.6	1.2	695	ND	1.8	701	ΩN	ΩN
	96/5	ND	2.3	<1.0	543	ND	2.1	547	ΩN	ΩN
	8/95	< 1.0	3.4	_	269	ND	2.3	704	NA	NA
	12/93	Ϋ́	3.1	NA	339	<0.5	8.0	343	NA	NA

-14-

TABLE 4 (Continued)
SUMMARY OF CHLORINATED SOLVENTS IN GROUNDWATER

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

								Total		
					cis-1,2-	trans-1,2-	Vinyl	Chlorinated	1,3-dichloro-	1,2-dichloro-
	Sample	$PCE^{a'}$	$TCE^{b'}$	1,1-DCE	DCE	DCE	Chloride	Ethenes	benzene	benzene
Sample Location	Date	$(\mu g/L)^{\omega}$	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
MW-02-041	11/98	QN	5.9	7.1	4,230	ND	QN	4,240	QN	<1.0
	96/5	ND	5.6	4.4	2,620	1.3	NO	2,630	ND	ND
	8/95	QN	15.3	7.4	3,950	2.3	QN	3,980	NA	Ϋ́Z
	12/93	NA	30.7	Ϋ́	5,230	<0.5	<0.5	5,260	NA	NA
MW-02-042	11/98	QN	21.7	2.7	1,630	6.1	20.1	1,680	ND	ΩN
	96/5	N	21.1	2.2	1,040	< 1.0	3.8	1,070	Ω	ND
	8/95	ND	61.2	4	1,550	1.2	2.7	1,620	NA	NA
	12/93	NA	98.5	NA	1,570	1.1	2.2	1,670	NA	NA
MW-02-043	11/98	4.1	2,880	1.1	116	QN	ND	3,000	ND	ND
	12/93	NA	373	NA	10.6	<0.5	<0.5	384	NA	NA
MW-108	96/5	< 1.0	562	24.2	12,600	2.3	ND	13,200	1.9	22.4
	8/95	ND	27,200	51.8	51,400	ND	10	78,600	NA	NA
MW-310	11/98	QN	< 1.0	<1.0	445	ND	1,130	1,580	<1.0	4.5
	96/5	ND	1.3	18.8	9,350	7.8	1,520	10,900	ΩN	9.3
	8/95	ND	2.2	25.6	14,900	13.5	897	15,900	NA	NA
MW-336	86/11	ND QX	70.4	QN	82.3	1.2	ND	154	ND	ND
	96/5	ND	54	ND	136	< 1.0	1.2	161	ND	ΩN
	8/95	ND	77.1	<1.0	158	< 1.0	ND	235	NA	NA
25-PLT-W2	8/95	ND	ΩN	QN	QN	ND	ND"	ND	NA	NA
26-PLT-W3	8/95	QN	1.2	QN	QN	ND	ND	1.2	NA	NA
27-PLT-W4	8/95	QN	ND	QN	< 1.0	ND	1.2	1.2	NA	NA
28-PLT-W4	8/95	ND	1.0	QN	QN	ND	ND	1.0	NA	NA
29-PLT-W5	8/95	QN	ΩN	QN	QN	ND	ND	ND	NA	NA
30-PLT-W6	8/95	QN	QN	QN	ND	ND	ND	ND	NA	NA
31-PLT-W11	8/95	QN	< 1.0	ND	2.3	ND	12.6	14.9	NA	NA

TABLE 4 (Continued) SUMMARY OF CHLORINATED SOLVENTS IN GROUNDWATER

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

	loro- 1,2-dichloro-	ne benzene	ļ	QN				QN											:								NA		NA
	1,3-dichloro-	penzene	T/gn)	ND	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	<1.0	NA	QN	ND ND	NA	<1.0	NA	NA	NA
Total	Chlorinated	Ethenes	(µg/L)	2.8	ND	112	387	1,920	2,250	181	232	118	ND	26.1	ND	ND	<1.0	9.1	7.8	5.6	133	307	27.2	5.0	8.9	4,640	4,280	2.6	3.5
1	Vinyl	Chloride	(μg/L)	QN	QN	21.8	246	12.1	8.3	3.7	4.9	1.0	ND	1.6	ND	ND	ND	QN	QN	QN	ND	ND	QN	QN	ND	ND	ND	ND	ND
	trans-1,2-	DCE	(µg/L)	QN	ND	QN	N ON	6.1	5.4	< 1.0	ND	1.0	ND	ND	ND	QN	QN	QN	QN	QN	ND	ND	QN	ND	ND	3.4	2.7	ND	ND
	cis-1,2-	DCE	(µg/L)	2.8	QX	90.3	141	1,880	2,210	177	226	115	ND	24.5	ΩN	QN	< 1.0	7.9	8.9	QN	1.3	2.9	S	QX	< 1.0	4,510	3,990	QN	ΩN
		$1,1\text{-DCE}^{\omega}$	(µg/L)	ND	ND	QN	ND	2.3	3	QN	<1.0	QN	QN	QN	QV	QN	QN	QN	ND	QN	ND	<1.0	QN	ND	QN	7.8	7.6	QN	ND
		$TCE^{b'}$	(µg/L)	QN	ND	ND	< 1.0	17.4	24	< 1.0	1.1	1.2	QN	QN	QN	ND	QN	1.2	1.0	5.6	130	302	27.2	5.0	8.9	118	279	2.6	3.5
		$\mathrm{PCE}^{a'}$	$(\mu g/L)^w$	QN	ND	ND	ND	ND	ΩN	QN	QN	QN	QN	QN	QN	ND	QN	QN	ND	ND	1.8	2.4	<1.0	ND	ND	1.5	2.8	QN	ND
		Sample	Date	96/5	8/95	96/5	8/95	96/5	8/95	96/5	8/95	8/95	8/95	8/95	8/95	8/95	8/95	8/95	8/95	11/98	96/5	8/95	11/98	96/5	8/95	96/5	8/95	8/95	8/95
			Sample Location	32-PLT-W12		33-PLT-W12		34-PLT-W12		35-PLT-W13		36-PLT-W14	37-PLT-W15	38-PLT-W15	39-PLT-W16	40-PLT-W7	41-PLT-W10	42-PLT-W9	43-PLT-W9	44-PLT-W1			45-PLT-W1			46-PLT-W8		47-PLT-W22	49-PLT-W22

TABLE 4 (Continued) SUMMARY OF CHLORINATED SOLVENTS IN GROUNDWATER FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

Sample Location DEE TCEP* 1,1-DCE* total. Cris-1,2- Vinyl Chloride Eithenes L3-dichloro- 1,2-dichloro- 1,2-dichloro- 1,2-DCE* Chloride Eithenes benzene 1,2-DCE* DCE* Chloride Light Lig									Total		
Sample PCE ^W TCE ^W 1,1-DCE ^W DCE Choride Ethenes barzene 895 ND ND ND ND ND ND NA 895 ND ND ND ND ND ND NA 895 ND 1.0 ND ND ND ND ND 895 ND 2.1 ND ND ND ND ND 895 ND 2.1 ND ND ND ND ND 895 ND 2.1 ND						cis-1,2-	trans -1,2-	Vinyl	Chlorinated	1,3-dichloro-	1,2-dichloro-
Base (hg/L)* (Sample	$PCE^{a'}$	$TCE^{b'}$	$1,1$ -DCE $^{c'}$	DCE	DCE	Chloride	Ethenes	benzene	benzene
8955 ND A1 ND ND A1 A1 N	ocation	Date	$(\mu g/L)^w$	(µg/L)	(hg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
8/95 ND C1.0 ND ND C1.0 ND C1.0 <td>-W17</td> <td>8/95</td> <td>ND</td> <td>QN</td> <td>QN</td> <td>ND</td> <td>ND</td> <td>QN</td> <td>ND</td> <td>NA</td> <td>NA</td>	-W17	8/95	ND	QN	QN	ND	ND	QN	ND	NA	NA
8/95 ND 1.0 ND ND ND 1.0 8/95 ND 12 ND ND ND ND 12.0 8/95 ND 66 ND < 1.0	-W17	8/95	QN	QN	QN	QN	ND	ND	ND	NA	NA
8/95 ND 12 ND ND ND 12.0 5/96 ND 66 ND < 1.0	r-w17	8/95	QN	1.0	QN	QN	ND	ND	1.0	NA	NA
\$N96 ND \$< (1.0) ND ND \$< (6) \$N95 ND \$ <	F-W18	8/95	QN	12	QN	QN	ND	ND	12.0	NA	NA
8/95 ND 2.1 ND ND ND 2.1 ND ND 2.1 ND ND 2.1 ND A.1 ND A.1 A.1 A.1 A.1 A.1 A.1 A.2 ND ND A.1	r-W19	96/5	ND	9.9	QN	< 1.0	ND	QN	9.9	QN	QN
5/96 ND 2.1 ND ND ND 2.1 8/95 ND < 1.0		8/95	ND	ND	ND	N	ND	ΩN	ND	NA	NA
8/95 ND < 1.0 ND ALD ND < 1.0 5/96 ND 206 ND 4.2 ND ND 210 8/95 < 1.0	L-W19	2/96	ND	2.1	QN	QN	ND	QN	2.1	ND	QN
5/96 ND 206 ND 4.2 ND ND 210 8/95 < 1.0		8/95	ND	< 1.0	QN	QN ON	ND	ND	<1.0	NA	NA
8/95 < 1.0 354 ND 6.7 ND ND 361 5/96 1.1 700 ND 24.8 ND ND 726 8/95 1.2 674 < 1.0	T-W19	96/5	ND	206	QN	4.2	QN	ND	210	ND	QN
596 1.1 700 ND 24.8 ND ND 726 8/95 1.2 674 <1.0		8/95	< 1.0	354	QN	6.7	ND	ND	361	NA	NA
8/95 1.2 674 <1.0 13.2 < 1.0 ND 698 8/95 ND < 1.0	T-W20	96/5	1:1	700	QN	24.8	QN	ΩN	726	QN	QN
8/95 ND < 1.0 ND 11.6 ND ND 11.6 8/95 ND 1.3 ND 1.6 ND ND 2.9 12/93 NA 5.6 NA 300 < 0.5		8/95	1.2	674	<1.0	23.2	< 1.0	ND	869	NA	NA
8/95 ND 1.3 ND 1.6 ND ND 2.9 1 2/93 NA 5.6 NA 300 <0.5	T-W21	8/95	QN	< 1.0	QN	11.6	ND	ND	11.6	NA	NA A
12/93 NA 5.6 NA 300 <0.5 306 12/93 NA <0.5	T-W21	8/95	QN	1.3	QN	1.6	ND	ND	2.9	NA	NA
12/93 NA <0.5 NA 3.1 <0.5 3.1 5/96 ND <1.0	(07.22)	12/93	NA	5.6	NA	300	<0.5	<0.5	306	NA	NA
5/96 ND < 1.0 < 1.0 1.0 1.0 1.0 5.2 2,450 ND 946 3,410 8/95 ND 1.3 5.2 2,450 6.7 946 3,410 8/95 ND < 1.0	86.02)	12/93	NA	<0.5	NA	3.1	<0.5	<0.5	3.1	NA	NA
8/95 ND 1.3 5.2 2,450 6.7 946 3,410 5/96 ND < 1.0	DA	96/5	QN	< 1.0	<1.0	169	ND	387	556	QN	1.6
5/96 ND < 1.0 7.2 2,830 7.3 1890 4,730 8/95 ND < 1.0	1 0	8/95	ND	1.3	5.2	2,450	6.7	946	3,410	NA	NA
8/95 ND < 1.0 11.8 1,800 ND 788 2,600 5/96 ND 4.8 ND 74.4 ND 146 225 8/95 ND 9.5 < 1.0	DB	96/5	QN	< 1.0	7.2	2,830	7.3	1890	4,730	<1.0	12.8
5/96 ND 4.8 ND 74.4 ND 146 225 8/95 ND 9.5 <1.0		8/95	ND	< 1.0	11.8	1,800	ND	788	2,600	NA	NA
8/95 ND 9.5 <1.0 94.6 ND 122 226 5/96 ND 1.4 15.8 10,300 9.0 940 11,300 8/95 ND 2.95 19.6 10,000 16.5 1430 11,500 5/96 ND ND ND 51.4 ND 91.6 143	20	96/5	QN	4.8	QN	74.4	ND	146	225	QN	ΩN
5/96 ND 1.4 15.8 10,300 9.0 940 11,300 8/95 ND 2.95 19.6 10,000 16.5 1430 11,500 5/96 ND ND ND 51.4 ND 91.6 143		8/95	ND	9.5	<1.0	94.6	ND	122	226	NA	NA
8/95 ND 2.95 19.6 10,000 16.5 1430 11,500 11,500 ND ND 81.4 ND 91.6 143	20	96/5	ND	1.4	15.8	10,300	9.0	940	11,300	QN	9.9
5/96 ND ND 51.4 ND 91.6 143		8/95	NO	2.95	19.6	10,000	16.5	1430	11,500	V.	NA
	F-22	96/5	ΩN	Ω	ND	51.4	ND	91.6	143	ΩN	ND

SUMMARY OF CHLORINATED SOLVENTS IN GROUNDWATER TABLE 4 (Continued)

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

	1,2-dichloro-	benzene	(µg/L)	ND	NA	NA	NA	NA V	NA A	NA	NA	Ϋ́	NA	NA V	NA	NA V	NA	NA
	1,3-dichloro-	benzene	(µg/L)	ND	NA	Y Y	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ϋ́Z	NA	NA
Total	Chlorinated	Ethenes	(hg/L)	1,950	1,770	10,000	181	2,090	6,370	4,320	81.8	2,370	249	1,920	5,850	3,630	6,710	43.7
	Vinyl	Chloride	(hg/L)	524	1020	25.7	<0.5	2080	3.6	5.7	<0.5	1050	<0.5	1710	3.1	486	<0.5	ND
	trans -1,2-	DCE	(µg/L)	1.1	1.2	1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	QN
	cis-1,2-	DCE	(µg/L)	1,420	752	10,000	160	9.1	6,370	4,310	69	1,320	240	208	5,850	3,140	6,710	2.4
		$1,1\text{-DCE}^{\omega}$	(µg/L)	1.4	NA	NA	Ϋ́	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Q.
		TCE^{b}	(µg/L)	ND	<0.5	0.7	20.6	<0.5	<0.5	9.0	12.8	<0.5	9.1	<0.5	<0.5	2.8	<0.5	41.3
		$PCE^{a'}$	$(\mu g/L)^{\omega}$	QN	NA	NA	NA	NA	Z	NA	NA	ND						
		Sample	Date	5/96	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	12/93	8/95
			Sample Location	84DF-34	84E (210.52)	84E (190.52)	84E (174.52)	84F (207.26)	84F (197.26)	84F (192.26)	84F (177.26)	84M (203.4)	84M (183.4)	84N (204.15)	84N (184.15)	840 (203.1)	840 (188.1)	PTAN SEWER

a/ PCE = Tetrachloroethene.

^{b/} TCE = Trichloroethene.

[°] DCE = Dichloroethene.

 $^{^{}d'}$ µg/L = Micrograms per liter. $^{e'}$ ND = Not detected.

[&]quot; NA = Not analyzed.

site. Alternatively, this concentration may be a result of a second CAH plume from another source located east of Site FT-002 converging with the FT-002 plume. This theory of converging CAH plumes was originally suggested in the 1995 addendum (Parsons ES, 1997).

Isopleth maps of TCE concentrations detected in groundwater in December 1993, August 1995, May 1996, and November 1998 are presented on Figure 3. Downgradient from the Site FT-002 source area, the TCE plume appears to converge with a second plume originating from an unknown source located east of the flightline. Data collected during the May 1996 sampling event and the ramp survey (OHM Remediation Service Corporation [OHM], 1996) confirm that an alternate source of CAHs, unrelated to Site FT-002, exists on the eastern side of the flightline in the area characterized by monitoring wells 47-PLT-W22 through 69-PLT-W21. Results of the ramp survey (OHM, 1996) also suggest that CAH contamination extends farther downgradient along the flightline, beyond the area of study addressed in this addendum.

cis-1,2-DCE was the CAH detected at the highest concentrations at most locations during all of the sampling events (Figure 4). During the December 1993, August 1995, and May 1996 sampling events, the total CAH concentrations were composed of an average of approximately 86 to 87 percent cis-1,2-DCE, 9 to 10 percent VC, 3 to 4 percent TCE, and less than 1 percent PCE and trans-1,2-DCE. Isopleth maps for VC are presented on Figure 5. The consistency of the average chlorinated solvent ratios from 1993 through 1996 suggests that the CAH plume had reached steady-state equilibrium, and that degradation rates for the individual chlorinated compounds have remained relatively constant through time. Alternatively, the consistent CAH ratios may indicate that biodegradation of CAHs had slowed and little additional degradation was occurring.

Total CAH concentrations measured in groundwater samples collected during the November 1998 sampling event averaged approximately 53 percent cis-1,2-DCE, 42 percent TCE, 7 percent VC, and less than 1 percent PCE and trans-1,2-DCE. However, the percentage differences between the 1998 and prior sampling events are due in part to the inclusion of data from well MW-02-43 in the 1998 calculations. This downgradient well also was sampled in December 1993, but not in 1995 or 1996. Comparison of the total CAH concentrations detected in groundwater from this well in 1993 (384 μ g/L) and 1998 (3,000 μ g/L) indicate that the plume expanded toward the southeast during this time period. The available data are insufficient to determine whether the CAH plume was still expanding in 1998. However, data for wells MW-02-040, -041, and -042 suggest that the Site FT-002 component of the CAH plume may be at or approaching steady state.

2.4 Biodegradation of BTEX

As discussed in the EE/CA, microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous reduction/oxidation (redox) reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors in Site FT-002 groundwater include natural organic carbon, fuel hydrocarbon compounds, and the less chlorinated ethenes

(i.e., DCE and VC). Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or compounds that occur in relatively oxidized states. Native electron acceptors include oxygen, nitrate, ferric iron, sulfate, and carbon dioxide. Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms typically use electron acceptors in the following order of preference: nitrate, ferric iron, sulfate, and finally carbon dioxide. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron, and reduction of nitrate and sulfate (Cozzarelli et al., 1990; Wilson et al., 1990). Under certain conditions, chlorinated ethenes also can be used as electron acceptors in microbially mediated redox reactions.

As a part of the November 1998 sampling event, analyses were performed on groundwater samples to determine the concentrations of geochemical indicators of intrinsic remediation. The results of these analyses are summarized in the following subsections.

2.4.1 Oxidation/Reduction Potential

ORP, a measure of the relative tendency of a solution to accept or transfer electrons, was measured at 16 wells sampled in November 1998. The dominant electron acceptor being reduced by microbes during BTEX oxidation is tied to the ORP of the groundwater. Measured site ORPs are summarized on Table 5.

The November 1998 ORP values at Site FT-002 range from -160 millivolts (mV) to 190 mV. Although measured site values are higher than the theoretical optimum levels for sulfate reduction and methanogenesis (Norris et al., 1994), this discrepancy is a common problem associated with measuring oxidizing potential using field instruments. It is likely that the platinum electrode probes are not sensitive to some of the redox couples (e.g., sulfate/sulfide). Many authors have noted that field ORP data alone cannot be used to reliably predict the electron acceptors that may be operating at a site (Stumm and Morgan, 1981; Godsey, 1994; Lovley et al., 1994). Integrating redox measurements with analytical data on reduced and oxidized chemical species allows a more thorough and reasonable interpretation of which electron acceptors are being used to biodegrade site contaminants. Groundwater data collected at Site FT-002 suggests that that both sulfate reduction and methanogenesis are continuing to occur even though the measured ORP range would exclude both processes.

Areas at the site with low ORPs continue to coincide with areas characterized by elevated BTEX concentrations; low DO, nitrate, and sulfate concentrations; and elevated ferrous iron and methane concentrations. This suggests that dissolved BTEX at the site is undergoing a variety of biodegradation processes, including aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis. The same relationships between ORP and electron acceptor/byproduct concentrations were noted during the December 1993 and August 1995 sampling events (Parsons ES, 1997). Only very limited ORP data were collected in May 1996.

TABLE 5 GROUNDWATER QUALITY DATA FOR GEOCHEMICAL INDICATORS FT-002 INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

Mayorache Sample Transact France France France France France Actional control Processor Actional control Processor Actional control Processor Actional control Processor Actional control A									PLATTSBU,	RGH AFB,	NEW YORK									
Sumple CTC/F Cond. Candectriby Redease Oxygen Nitrie Cond. Candectriby Redease Nitrie Cond. Candectriby Nitrie Cond. Candectriby Nitrie Cond. Candectriby Nitrie							Dissolved	Nitrate+		Ferrous						Alkalinity		Carbon		
Date CCC Colin Colin	Sample	Sample	Temp.	Ηd	Conductivity	Redox	Oxygen	Nitrite	Ammonia	Iron	Sulfate	Sulfide	Methane	Ethane	Ethene	(CaCO ₃)	Chioride	Dioxide	TOC	Hydrogen
1,593 5,9 5,	Location	Date	(°C)	/q(ns)	(μS/cm) ^{ο/}	(mv)	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(percent)	(nM)
11-253 7.4 NA NA 2.1 0.1	MW-02-005	11/98	6.6	5.9	428	-110	6.0	< 0.10	< 0.10	9.0	17.1	<0.1	ND®	QN	QN	140	38.7	NSIV	1.26	NA
10.9 5.8 14.0 0.5 0.18 7.0 0.10 3.0 0.0		12/93	7.4	ΝA	ΝΑ	NA	2.1	0.1	0.64	NA	9.73	NA	0.005	NA	0.0005	232	142	250	5.30	NA
1293 91	MW-02-006	11/98	10.9	5.8	788	-160	0.5	< 0.10	0.1	3.0	23.7	0.5	0.090	ND	ND	180	115	SN	0.624	NA
1293 94 NA NA -117 0.8 0.12 1.69 35.0 25.1 NR 0.0007 NA ND ND 1.1293 94.4 35.		8/95	13.8	7.2	1,120	-162	0.5	0.18	NA	5.6	30.9	<0.1	0.005	<0.002	Ω	160	219	148	3.00	0.5
1198 84 58 244 54 61 61 61 61 61 61 61 6		12/93	6.6	Ϋ́	NA	-137	8.0	0.12	1.69	3.50	25.1	NR	0.007	NA	QN	109	193	117	4.80	NA
1293 913 NA NA NA 11 01 023 NA 117 NR 0234 NA 0307 NA 0308 NA 0308	MW-02-007	11/98	8.4	5.8	244	-84	0.3	< 0.10	0.3	0.2	7.62	<0.1	0.108	QN	QN	80	11.9	SN	1.1	Ν
1293 931 NA		12/93	9.3	NA	Ϋ́Z	NA	1.1	0.1	0.25	NA	11.7	NR	0.204	NA	QN	113	8.22	80	0.50	NA
1293 9.1 NA NA NA 1 1 11.0 0.59 NA 2.11 NA 0.000 NA ND ND ND ND ND ND ND	MW-02-014	12/93	9.31	ΝA	NA	NA	1.2	BLQ"	2.1	NA	BLQ	NA	0.307	NA	0.0032	227	63.5	319	37.40	NA
11988 91 644 388 144 75 127 6210 611 131 611 181	MW-02-015	12/93	9.3	ΝA	ΝΑ	NA	-	BLQ	0.59	NA A	23.1	VA	0.000	NA	QV Q	96	59.9	107	5.50	NA
1198 100 60 585 -128 -011 -010 12 150 -053 -041 0.020 0.0D	MW-02-017	11/98	9.1	6.4	398	144	7.5	1.27	< 0.10	< 0.1	13.3	<0.1	QN Q	N Q	Ω	180	14.0	SN	2.42	NA
596 NA NA Color NA	MW-02-019	11/98	10.0	0.9	558	-128	<0.1	< 0.10	1.2	15.0	< 0.5	<0.1	0.020	QN	N Q	240	7.09	SN	6.59	NA
895 140 72 692 207 0.2 0.11 1.0 1.0 0.0 0.0 0.0 1293 914 7.3 644 -177 1.3 0.11 1.0 1.0 0.0 0.11 1.0 0.0 0.0 0.0 0.1 0.0 </td <td></td> <td>96/5</td> <td>NA</td> <td>NA</td> <td>ΥN</td> <td>NA</td> <td>NA</td> <td>< 0.05</td> <td>NA</td> <td>NA</td> <td>< 0.5</td> <td>NA</td> <td>0.034</td> <td>NA</td> <td>0.420</td> <td>NA</td> <td>8.98</td> <td>NA</td> <td>9.00</td> <td>NA</td>		96/5	NA	NA	ΥN	NA	NA	< 0.05	NA	NA	< 0.5	NA	0.034	NA	0.420	NA	8.98	NA	9.00	NA
1293 10 7.4 644 -127 0.9 0.11 1.26 10.30 0.08 NA 0.011 NA 0.039 11/98 10.1 6.0 5.4 -1.17 1.3 0.12 -0.19 1.07 BLO NA 0.04 11/98 10.1 6.0 5.04 -1.17 1.3 0.12 -0.04 0.2 NA 0.05 NA NA NA NA 1.0 0.05 NA 2.0 0.0 NA NA NA NA NA 0.0 0.1 -0.10 0.2 1.74 -0.0 NA NA 0.0 NA NA 0.0 0.1 -0.10 0.2 1.74 -0.0 NA NA NA NA 0.0 0.1 -0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		8/95	14.0	7.2	692	-207	0.2	0.18	NA A	8.01	< 0.5	<0.1	0.063	NA	9000.0	264	27.7	314	9.5	2.5
1993 94 73 695 -117 13 012 304 107 BLQ NA 0.225 NA 0.004 1198 104 56 594 40 0.2 1.02 6.010 0.7 153 6.01 0.025 NA ND 1198 104 59 586 880 0.1 6.010 6.010 0.7 153 6.01 0.025 NA ND 1198 104 59 586 880 0.1 6.010 6.010 0.7 153 6.01 0.025 NA ND 1293 64 12.1 8.670 8.7 5.5 0.09 0.1 6.01 0.07 0.0 0.0 0.0 1293 64 12.1 8.670 8.7 5.5 0.09 0.1 0.0 0.1 0.0 0.0 0.0 1293 8 8 1.3 1.7 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 1293 8 8 1.3 1.7 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1293 8 8 8 8 1.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1294 9.6 1.1 1.1 1.1 1.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1295 8.4 1.2 1.2 8.670 8.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1294 9.6 1.1 1.1 8.670 8.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1295 8.8 8.7 1.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 1295 8.8 8.7 1.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1295 8.4 1.2 1.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 1295 8.4 1.2 1.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1295 8.4 1.2 1.1 0.0 0.1 0.1 0.1 0.0		12/93	10	7.4	644	-127	6.0	0.11	1.26	10.30	0.08	NA	0.111	NA	0.039	262	42.4	278	11.30	NA
1198 101 60 504 40 0.2 0.0 0.1 6.0 504 40 0.2 0.12 <0.1 0.0 0.1 0.1 0.0 0.1 <td>MW-02-020</td> <td>12/93</td> <td>9.4</td> <td>7.3</td> <td>969</td> <td>-117</td> <td>1.3</td> <td>0.12</td> <td>3.04</td> <td>10.7</td> <td>BLQ</td> <td>NA</td> <td>0.295</td> <td>NA</td> <td>0.004</td> <td>322</td> <td>25.1</td> <td>321</td> <td>17.30</td> <td>NA</td>	MW-02-020	12/93	9.4	7.3	969	-117	1.3	0.12	3.04	10.7	BLQ	NA	0.295	NA	0.004	322	25.1	321	17.30	NA
12,993 94 NA NA NA 1.4 0.55 0.59 NA 1.5 0.075 NA ND ND ND ND ND ND ND	MW-02-021	11/98	10.1	6.0	504	40	0.2	1.02	< 0.10	0.2	17.4	<0.1	0.026	ND	ND	200	8.96	SN	3.05	NA
1,989 104 59 596 890 0.1 < 0.010 0.17 15.3 < 0.01 0.0242 ND ND ND ND ND ND ND N		12/93	9.4	NA	NA	NA	1.4	0.55	0.59	NA	22	NA	0.075	NA	ND	261	9.14	290	4.60	NA
895 103 73 NA 210 106 0.47 NA < 0.05 165 NA < 0.001 ND ND 12933 7.2 8.4 12.1 8.670 -877 51.5 0.54 BLQ 11.5 NA < 0.001	MW-02-022	86/11	10.4	5.9	969	-80	0.1	< 0.10	< 0.10	0.7	15.3	<0.1	0.242	ND	ND	220	9.61	NS	4.05	NA
1293 7.2 7.8 6.27 153 10 0.44 BLQ BLQ 196 NA ND NA ND 1293 6.4 12.1 8.670 -87 5.5 0.51 0.17 NA 0.004 NA 0.006 1293 9.4 1.1 8.60 -87 5.5 0.51 0.1 6.1 NA 0.004 NA 0.000 11.98 9.6 6.1 7.7 6.2 0.01 6.01 6.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	MW-02-026	8/95	10.3	7.9	NA	210	10.6	0.47	NA	< 0.05	16.5	NA	< 0.001	QN	ND	64	144	36		Ν
12/93 64 121 8,670 -87 5.5 0.51 0.17 NA 1.79 NA 0.004 NA 0.006 11/93 9,4 7.7 288 -107 2.2 0.09 0.2 BIQ 11.5 NA 0.168 NA 0.000 5/96 NA NA NA NA NA NA NA 0.000 0.1 6.01 6.01 6.04 NA 0.000 8/95 13.1 7.7 621 207 0.3 33.3 NA 6.05 6.08 NA 6.000 0.00		12/93	7.2	7.8	627	153	10	0.44	BLQ	BLQ	19.6	NA	ND	NA	ND	Ξ	103	102	0.80	ΝV
1193 94 77 288 -107 22 609 02 BLQ 115 NA 0.168 NA 0.0002 1198 9.6 61 778 182 0.1 630 0.1 6.01 6.01 0.04 ND 8/96 NA NA NA 6.02 6.03 NA 0.03 NA 6.003 8/96 NA NA NA 6.03 NA 0.030 NA 0.003 12/93 8 8.2 513 13 13 2.2 26.5 BLQ 6.01 6.03 NA 0.030 NA 0.003 11/98 9.6 6.1 664 50 0.1 0.53 <0.1	MW-02-027	12/93	6.4	12.1	8,670	-87	5.5	0.51	0.17	NA	1.79	NA	0.004	NA	9000.0	1590	84.7	ND	3.40	NA
11/98 9,6 6,1 778 182 0,1 163,0 0,1 6,1 624 40,1 0,04 ND ND 8/96 NA NA NA NA NA NA 0.029 NA 0.003 8/96 NA NA NA NA 0.029 NA 0.003 12/93 8 8.2 513 13 2.2 26.5 BLQ 6.0 NA 0.09 NA 0.009 11/98 9.6 6.1 664 50 0.1 0.53 6.01 0.68 NA 0.09 NA 0.00 11/98 9.6 6.1 664 50 0.1 0.53 6.01 0.01 0.00 0.0 0.00 NA ND 0.00 NA 0.00 NA 0.00 NA 0.00 NA 0.00 NA 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 0.00 0	MW-02-030	12/93	9.4	7.7	288	-107	2.2	0.09	0.2	BLQ	11.5	NA	0.168	NA	0.0002	110	13.5	102	06:0	NA
5/96 NA NA A 22 8 NA NA 673 NA 6.029 NA 6.003 8/95 13.1 7.7 621 207 0.3 33.3 NA < 605	MW-02-040	11/98	9.6	6.1	778	182	0.1	163.0	0.1	< 0.1	6.24	<0.1	0.04	N	N	160	6.04	NS	1.80	NA
8/95 13.1 7.7 621 207 0.3 33.3 NA < 6.06 6.08 NA 6.090 6.090 Co.003 11/93 8 8 513 13 2.2 26.5 BLQ BLQ 55.3 NA 0.090 NA ND 11/98 9.6 6.1 664 50 0.1 0.53 <0.10		96/9	NA	Ν	NA	NA	NA	22.8	NA	Ϋ́N	6.73	NA	0.029	NA	<0.003	NA	4.94	ΝΑ	4.10	NA
12/93 8 8 2 513 13 2.2 26.5 BLQ BLQ 553 NA 0.009 NA ND 11/88 9.6 6.1 664 50 0.1 0.53 <0.10		8/95	13.1	7.7	621	207	0.3	33.3	NA	< 0.05	80.9	NA	0.030	<0.002	<0.003	159	4.76	86	2.80	0.1
11/98 9,6 6,1 664 50 0.1 0.53 < 0.10 < 0.85 < 0.1 0.608 ND 0.002 8/95 NA NA NA NA 0.24 NA 0.13 NA 0.03 0.00		12/93	∞	8.2	513	13	2.2	26.5	BLQ	BLQ	5.53	NA	600.0	NA	ND	136	2.14	119	1.40	NA
5/96 NA NA NA 0.24 NA 0.24 NA 0.24 NA 6.29 NA 6.29 NA 6.20 NA 6.09 0.002 0.003 40.003 1.33 NA 0.240 0.002 6.003 40.003 <t< td=""><td>MW-02-041</td><td>11/98</td><td>9.6</td><td>6.1</td><td>664</td><td>20</td><td>0.1</td><td>0.53</td><td>< 0.10</td><td>< 0.1</td><td>0.85</td><td><0.1</td><td>809.0</td><td>ND</td><td>0.002</td><td>260</td><td>13.4</td><td>NS</td><td>9.44</td><td>NA</td></t<>	MW-02-041	11/98	9.6	6.1	664	20	0.1	0.53	< 0.10	< 0.1	0.85	<0.1	809.0	ND	0.002	260	13.4	NS	9.44	NA
8/95 15.1 7.5 NA 202 0.5 201 NA < 6005 2.15 NA 0.240 0.002 < 6.003 12/93 8.4 7.9 682 8 3 0.69 BLQ 1.66 NA 0.160 NA 0.005 11/8 10.0 6.1 386 -35 0.1 < 0.10		96/5	NA	NA	ΝΑ	NA	NA	0.24	NA	NA	1.33	NA	0.222	VV	<0.003	NA	9.01	NA	4.80	NA
12/93 84 7.9 682 8 3 0.69 BLQ BLQ 1.66 NA 0.160 NA 0.005 11/98 10.0 6.1 386 -35 0.1 <0.10		8/95	15.1	7.5	NA	202	0.5	2.01	NA	< 0.05	2.15	NA	0.240	0.002	<0.003	315	8.01	140	8.90	0.37
11/98 10.0 6.1 386 -35 0.1 < 0.10 0.1 0.5 < 0.5 < 0.5 < 0.1 OND ND ND ND 5/96 NA NA NA 0.01 NA 0.01 NA 0.03 NA 0.03 NA 0.03 18/95 1/3 1/4 NA 0.02 NA 1.20 NA 0.03 NA 0.03 18/95 1/2 1/4 1/4 0.11 0.17 1/4 0.17 0.10 0.2 1/4 0.03 NA 0.00 NA 0.00 0.03 ND 0.00 0.03 ND 0.00 ND ND <td></td> <td>12/93</td> <td>8.4</td> <td>4.7</td> <td>682</td> <td>∞</td> <td>3</td> <td>69.0</td> <td>BLQ</td> <td>BLQ.</td> <td>1.66</td> <td>NA</td> <td>0.160</td> <td>NA</td> <td>0.0005</td> <td>350</td> <td>11.2</td> <td>334</td> <td>11.40</td> <td>NA</td>		12/93	8.4	4.7	682	∞	3	69.0	BLQ	BLQ.	1.66	NA	0.160	NA	0.0005	350	11.2	334	11.40	NA
5/96 NA NA NA < 0.05 NA O.05 NA 0.63 NA 1.20 NA 0.003 8/95 13.3 7.9 381 160 0.9 0.21 NA < 0.05	MW-02-042	86/11	10.0	6.1	386	-35	0.1	< 0.10	0.1	0.5	< 0.5	<0.1	0.799	ND	ND	160	11.8	NS	4.66	NA
8/95 133 7.9 381 160 0.9 0.21 NA < 6.05 < 6.05 NA 1.29 0.002 0.004 12/93 7.6 7.9 330 -37 2.4 0.13 0.117 BLQ 0.26 NA 0.503 NA 0.0035 11/98 10.2 5.9 655 122 0.1 12.8 < 0.10		96/9	NA	NA	NA	NA	NA	< 0.05	NA	Ν	0.63	NA	1.200	NA	0.003	NA	=	ΝA	4.90	NA
12/93 7.6 7.9 330 -37 2.4 0.13 0.117 BLQ 0.26 NA 0.503 NA 0.0035 11/98 10.2 5.9 655 122 0.1 12.8 <0.10		8/95	13.3	7.9	381	160	6.0	0.21	NA	< 0.05	< 0.5	NA	1.29	0.002	0.004	177	11.4	80	9.00	0.47
11/98 102 5.9 655 122 0.1 12.8 < 0.10 0.2 15.2 < 0.1 0.02 ND ND ND 12/93 9.4 NA NA 1.1 1.1 1.4 31.1 BLQ NA 13 NA 0.01 NA ND 12/93 8.9 6.9 1.172 -177 2.5 94.9 0.83 BLQ 9 NA 0.001 NA ND 8/95 12.0 6.8 6.3 -139 0.1 0.18 NA 4.0 5.51 NA 1.00 0.003 11/98 9.8 5.9 741 -105 0.1 0.18 NA 4.0 5.51 NA 1.42 0.006 <0.033		12/93	7.6	7.9	330	-37	2.4	0.13	0.117	BLQ	0.26	NA	0.503	VV	0.0035	157	11.3	164	00.9	NA
12/93 94 NA NA NA 14 31.1 BLQ NA 13 NA 6001 NA ND 12/93 8.9 6.9 1.172 -177 2.5 94.9 0.83 BLQ 9 NA 6001 NA ND 5/96 12.1 7.1 831 -4 0.5 <0.05	MW-02-043	11/98	10.2	5.9	655	122	0.1	12.8	< 0.10	0.2	15.2	<0.1	0.002	ND	QN	160	2.75	SN	4.28	NA
12/93 8.9 6.9 1.172 -177 2.5 94.9 0.83 BLQ 9 NA 0.001 NA ND 5/96 12.1 7.1 831 -4 0.5 <0.05		12/93	9.4	Ϋ́	NA	NA	4.1	31.1	BLQ	٧N	13	NA	0.001	NA	<u>N</u>	180	0.93	225	1.0	N A
5/96 12.1 7.1 831 -4 0.5 < 6.065 NA 45.6 0.96 0.1 1.6 NA < 6.002 8/95 12.0 6.8 6.23 -139 0.1 0.18 NA 4.0 5.51 NA 1.42 0.006 < 6.003	MW-02-044	12/93	8.9	6.9	1,172	-177	2.5	94.9	0.83	BLQ	6	NA	0.001	NA	QN	110	BLQ	294.00	1.4	NA
895 12.0 6.8 623 -139 0.1 0.18 NA 4.0 5.51 NA 1.42 0.06 <0.003 11/98 9.8 5.9 741 -105 <0.1	MW-02-108	96/9	12.1	7.1	831	4-	0.5	< 0.05	NA	45.6	96.0	0.1	1.6	NA	<0.002	330	96:0	NA	93.50	NA
11/98 9.8 5.9 741 -1.05 <0.1 <0.10 2.5 12.0 <0.5 <0.1 0.467 0.363 ND 5/96 10.3 6.9 704 -75 0.1 <0.05 NA 16 <0.05 0.1 0.339 NA 0.013 895 13.5 6.9 785 -160 0.5 0.20 NA 15.3 <0.05 <0.1 0.305 0.002 0.035		8/95	12.0	8.9	623	-139	0.1	0.18	NA	4.0	5.51	NA	1.42	900.0	<0.003	204	62.6	NA	80.4	6.7
10.3 6.9 704 -75 0.1 <0.05 NA 16 <0.05 0.1 0.339 NA 0.013 13.5 6.9 785 -160 0.5 0.20 NA 15.3 <0.05 <0.1 0.305 0.002 0.035	MW-310	11/98	8.6	5.9	741	-105	<0.1	< 0.10	2.5	12.0	< 0.5	<0.1	0.467	0.363	QN	220	78.4	SN	12.7	NA
13.5 6.9 785 -160 0.5 0.20 NA 15.3 < 0.05 < 0.1 0.305 0.002 0.035		96/9	10.3	6.9	704	-75	0.1	< 0.05	Ν	91	< 0.05	0.1	0.339	Ϋ́	0.013	300	42.5	Ν	31.10	NA
		8/95	13.5	6.9	785	-160	0.5	0.20	NA	15.3	< 0.05	<0.1	0.305	0.002	0.035	330	47.9	374	30.40	٧N

TABLE 5 GROUNDWATER QUALITY DATA FOR GEOCHEMICAL INDICATORS FT-002 INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

						Discolved	Nitrate+		Ferrons						Alkalinity		Carbon		
						Dissolved	Mala		Charles						Jummin		-		
Sample	Sample	Temp.	Hd	Conductivity	Redox	Oxygen	Nitrite	Ammonia	lron	Sulfate	Sulfide	Methane	Ethane	Ethene	(CaCO ₃)	Chloride	Dioxide	TOC	Hydrogen
Location	Date	(°C)*	(sn)	(μS/cm) ^{ο′}	(mv) _d ,	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(percent)	(nM)
MW-336	11/98	9.5	5.8	408	-135	0.2	< 0.10	0.2	< 0.1	14.9	<0.1	0.162	ND	QN	100	52.4	SN	1.50	ΝΑ
	96/5	NA	NA	308	NA	NA	0.08	Ϋ́	NA	11.8	ΝA	0.138	NA	<0.003	NA	20.3	NA	1.20	0.54
	8/95	15.0	7.9	320	-196	9.0	0.16	NA	<0.05	12.1	<0.1	0.198	ND	0.000	134	20.1	9/	2.10	Ν
25-PLT-W2	\$6/8	13.6	7.8	926	54	6.7	0.53	NA	<0.05	31.3	NA	<0.001	ND	ND	134	182	112	1.50	NA
26-PLT-W3	\$6/8	12.3	7.5	672	86-	9.0	1.06	NA	NA	19.7	0.1	< 0.001	ND	ND	176	6.68	99	1.30	NA
27-PLT-W4	8/95	13.2	7.0	926	-185	0.1	0.19	NA	NA	42.7	<0.1	0.119	ND	ND	278	109	104	3.00	NA
28-PLT-W4	8/95	20.8	7.9	009	54	7.5	1.36	NA	NA	19.3	NA	< 0.001	Ð.	QV	154	9/	861	12.40	NA
29-PLT-W5	8/95	16.0	7.9	348	-50	0.8	0.14	AN	< 0.05	17.2	<0.1	0.088	QN	ND	130	23.8	89	0.50	NA
30-PLT-W6	8/95	13.3	8.0	490	-255	0.5	0.12	NA	< 0.05	6.22	<0.1	1.20	QN	ND	601	73	64	.1.00	NA
31-PLT-W11	8/95	14.8	7.5	840	-110	0.7	0.16	ΝΑ	9.4	12.6	NA	13.9	<0.002	QN	388	36.6	226	3.10	ΑN
32-PLT-W12	5/96	7.8	7.8	490	991	0.1	39.5	NA	< 0.1	3.76	<0.1	0.002	NA	ND	98	0.77	NA	08.0	NA
	8/95	14.6	7.7	521	135	9.0	33.0	N A	< 0.05	4.48	NA	0.001	N	N Q	104	0.78	99	0.50	NA
33-PLT-W12	96/5	NA	ΑN	339	NA	ΝA	8.7	VV	NA	5.61	<0.1	0.051	NA	ND	NA	2.28	NA	2.20	Ν
	\$6/8	12.1	9.7	420	132	0	7.99	NA	< 0.05	6.1	NA	0.285	<0.002	0.007	168	4.12	89	4.10	NA
34-PLT-W12	96/5	7.8	9.9	559	166	0.1	< 0.05	NA	< 0.1	96.0	<0.1	1.790	NA	<0.003	98	18.4	NA	8.20	Ν
	8/95	13.9	7.5	587	-154	6.0	0.29	NA	0.7	0.52	0.1	3.53	<0.002	<0.003	260	19.5	72	8.10	NA
35-PLT-W13	96/5	8.7	8.2	412	3	0.2	9.49	NA	0.11	14.4	<0.1	0.044	NA	NA	NA	2.63	NA		Ϋ́
	\$6/8	16.4	7.8	458	134	0.4	10.4	NA	< 0.05	14.7	NA	0.115	ND	<0.003	185	3.29	36	2.40	NA
36-PLT-W14	\$6/8	15.5	7.4	630	-155	0.5	0.19	NA	6.0	139	<0.1	0.065	ND	ND	193	8.25	9/	1.20	NA
37-PLT-W15	\$6/8	19.5	6.4	117	66-	1.4	0.16	NA	52.5	< 0.5	NA	13.9	<0.002	ND	404	3.74	NA	18.60	Ν
38-PLT-W15	8/95	17.5	7.9	390	-280	6.0	0.14	ΝΑ	0.1	< 0.5	0.1	4.40	ND	QN	06	9.03	88	3.90	NA
39-PLT-W16	8/95	13.9	7.3	536	-50	0.2	3.31	NA	< 0.05	12.5	<0.1	0.014	QN	ΩN	261	1.25	134	1.70	AN
40-PLT-W7	\$6/8	13.5	8.9	944	-140	0.5	0.16	NA	29.8	< 0.5	<0.1	21.4	<0.002	Q	526	1.15	NA	12.70	NA
41-PLT-W10	\$6/8	14.7	7.3	809	54	0.2	4.24	NA	NA	12.4	NA	0.045	ND	ΩN	294	0.81	180	2.60	NA
42-PLT-W9	8/95	15.2	7.3	919	25	0.4	0.62	NA	< 0.05	17.8	NA	< 0.001	ND	ND	280	16.4	198	4.30	NA
43-PLT-W9	\$6/8	14.7	7.3	206	-20	0.2	0.20	NA	0.1	13.5	NA	< 0.001	ND	ND	237	11.1	124	3.20	ΑΝ
44-PLT-W1	11/98	7.6	6.0	669	-105	0.1	< 0.10	< 0.10	9.0	20.7	<0.1	NA	NA	NA	140	114	NS	1.12	Ϋ́
	96/5	NA	NA	657	NA	NA	0.57	N A	NA	15.4	NA	< 0.001	NA	QV	NA	65.2	NA	1.30	Ν A
44-PLT-W1	8/95	15.2	9.7	965	138	7.5	0.62	NA	< 0.05	13.6	NA	< 0.001	ND	ND	231	42.5	84	1.70	NA
45-PLT-W1	11/98	11.4	6.5	685	190	8.3	0.63	< 0.10	< 0.1	17.8	<0.1	N Q	ND	QN	200	71.6	SN	92.0	N
	96/5	NA	NA	621	NA	NA	< 0.05	NA	NA	20.3	NA	< 0.001	NA	Q	NA	95.2	NA	68.0	Ν
45-PLT-W1	8/95	6.91	7.7	625	-50	0.5	0.17	NA	< 0.05	20.8	<0.1	0.001	ND	Ω	691	94.2	011	09.0	NA
46-PLT-W8	96/5	NA	NA	989	NA	NA	< 0.05	Ϋ́	NA	< 0.5	NA	NA	NA	NA	255	51.6	NA		ΝΑ
	8/95	16.3	7.1	208	09-	9.0	0.18	NA	8.0	< 0.5	<0.1	0.009	<0.002	<0.003	279	58.5	242	8.30	NA
47-PLT-W22	\$6/8	NA	9.8	256	81	NA	0.17	NA	< 0.05	0.59	NA	1.88	<0.002	ND	214	0.85	NA	3.30	NA
49-PLT-W22	\$6/8	17.3	7.8	289	-230	0.3	0.12	NA	< 0.05	12.6	0.1	1.19	<0.002	QN	117	50.6	09	0.80	NA
55-PLT-W17	\$6/8	14.8	9.7	251	-150	0.3	0.13	NA	6.3	< 0.5	<0.1	3.09	ND	ND	128	12.5	46	1.30	NA
56-PLT-W17	\$6/8	16.3	6.7	481	66	0.3	31.0	NA	0.1	8.58	NA	0.049	ND	ND	114	2.22	36	0.20	NA
57-PLT-W17	8/95	15.8	9.7	513	75	0.1	31.1	NA	0.1	9.52	Ν	0.045	ND	ND	1117	4.46	102	0.70	NA
50 DI T 1010																			

TABLE 5
GROUNDWATER QUALITY DATA FOR GEOCHEMICAL INDICATORS FT-002

INTRINSIC REMEDIATION EE/CA ADDENDUM II PLATTSBURGH AFB, NEW YORK

								LAI ISDO	RGH AFD,	TLAI ISBURGH AFB, NEW YORK	_								
						Dissolved	Nitrate+		Ferrous						Alkalinity		Carbon		
Sample	Sample	Temp.	Hd	Conductivity	Redox	Oxygen	Nitrite	Ammonia	Iron	Sulfate	Sulfide	Methane	Ethane	Ethene	(CaCO ₃)	Chloride	Dioxide	TOC	Hydrogen
Location	Date	(°C) ^{2/}	(sn) _{p/}	(μS/cm) ^{e/}	(mv) _{d/}	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(percent)	(nM) ^{f'}
59-PLT-W19	96/5	NA	NA	265	NA	NA	0.45	NA	NA	2.60	NA	606.0	NA	<0.003	NA	1.24	NA	1.50	NA
	8/95	18.2	8.5	260	-220	1.2	0.11	ΝΑ	< 0.05	0.91	<0.1	1.25	0.002	<0.003	212	1.2	NA	2.20	NA
60-PLT-W19	96/5	NA	NA	197	NA	NA	0.07	NA	NA	5.59	NA	0.280	NA	ND	NA	3.38	NA	1.10	NA
	8/95	16.5	8.3	202	-130	0.2	0.11	ΝΑ	< 0.05	7.28	<0.1	0.224	ΩN	N	218	3.36	NA	1.00	Ϋ́
61-PLT-W19	96/5	AN	ΝA	569	NA	NA	30.1	NA	NA	9.30	NA	0.003	NA	QN	NA	2.44	NA	2.10	ΑΝ
	8/95	17.1	7.3	109	-30	0.1	26.2	ΝΑ	0.4	96.6	<0.1	0.002	QN	QN	185	3.36	80	06:0	NA
63-PLT-W20	96/5	NA	NA	682	NA	NA AN	39.5	NA	NA	9.13	NA	0.017	NA	QN	NA	2.88	ΑN	2.10	NA
	8/95	17.4	7.2	ΝΑ	110	0.1	34.8	NA	< 0.05	9.32	ΝA	0.156	QN	QN	260	2.17	142	1.10	NA
69-PLT-W21	8/95	16.9	6.7	830	-120	0.1	1.14	NA	13.3	4.88	<0.1	0.594	ND	ND	425	1.49	ΝΑ	4.30	ΑN
84DA	96/5	NA	NA	501	NA	NA	< 0.05	NA	NA	1.18	NA	0.074	NA	0.257	NA	49	NA	1.70	ΑZ
	8/95	14.6	7.0	593	-171	0.4	0.17	NA	14.5	< 0.5	<0.1	0.088	<0.002	0.028	252	33.9	330	7.60	ΥN
84DB	96/5	NA	NA	637	NA	NA	< 0.05	NA	NA	< 0.5	NA	0.275	NA	0.713	NA	45.9	NA	6.10	Ϋ́
	8/95	12.1	6.9	640	-165	0.4	0.17	NA	17.3	< 0.5	<0.1	0.180	<0.002	0.208	282	34.5	278	14.5	NA
84DC	96/5	9.2	7.2	314	6	0.2	< 0.05	NA	1.61	8.92	<0.1	0.018	NA	0.089	137	27.5	NA	2.14	NA
	8/95	15.6	7.0	258	-199	0.4	0.14	ΝΑ	8.3	12.7	<0.1	< 0.001	QN	0.017	NA	15.6	124	4.1	NA
84DD	96/5	9.3	7.2	723	2	0.2	< 0.05	NA	19.3	< 0.5	<0.1	0.714	NA	0.170	256	57.2	NA	24.30	ΝA
	8/95	15.2	7.0	770	-160	0.4	0.17	NA VA	13.8	< 0.5	<0.1	1.01	0.002	0.182	347	45.9	288	21.30	NA
84DF-22	96/5	ΝΑ	NA	VA	NA	ΥN	4.92	NA	NA	NA	NA	0.045	NA	0.0040	NA	NA	NA	4.50	NA
84DF-34	96/5	Ν	ΥN	518	NA	Ϋ́	80.0	NA	NA	1.51	NA	0.617	NA	0.0040	NA	13.6	NA	13.80	NA
84B (207.22) ^{k/}	12/93	NA	NA	NA	-21	ΥN	0.19	1.36	0.50	5.49	NA	0.030	NA	ND	179	222	176	11.30	NA
84B (186.02)	12/93	NA	NA	516	153	Ϋ́	0.19	0.27	BLQ	18.8	NA	910.0	NA	ND	135	69.2	121	6.2	NA
84E (210.52)	12/93	NA	7.4	695	-47	NA	BLQ	2.15	1.20	5.78	NA	0.099	NA	0.220	268	54.6	490	15.50	NA
84E (190.52)	12/93	NA	7.5	784	-72	NA	0.05	2.12	1.20	7.15	NA	0.322	NA	0.0055	290	9	426	36.7	NA
84E (174.52)	12/93	NA	7.8	416	130	NA	0.15	0.23	BLQ	20.3	NA	800.0	NA	ND	35	35.7	124	7.6	NA
84F (207.26)	12/93	NA	7.1	722	<i>L9-</i>	NA	90.0	2.6	2.60	5.43	NA	0.512	NA	0.1287	285	80	550	21.0	NA
84F (197.26)	12/93	Ν	7.4	794	68-	ΝΑ	90.0	6.11	5.30	BLQ	NA	0.134	NA	0.0012	140	72	356	22.5	NA
84F (192.26)	12/93	Ν	7.3	725	-82	NA	BLQ	3.99	2.30	BLQ	ΝA	0.088	NA	0.0009	224	78.5	323	17.7	NA
84F (177.26)	12/93	Ν	7.8	410	66	NA	BLQ	0.36	BLQ	22	NA	0.011	NA	ND	136	37.3	138	3.6	NA
84M (203.4)	12/93	NA	7.2	884	-67	ΑN	0.12	4.98	8.90	3.44	NA	0.121	NA	0.0284	290	94.3	668	36.6	NA
84M (183.4)	12/93	Ϋ́	8.4	370	10	ΝΑ	0.14	1.09	BLQ	14.6	NA	0.020	NA	ND	191	56.9	369	3.1	NA
84N (204.15)	12/93	NA	7.1	725	-67	NA	0.12	1.66	2.90	0.21	NA	0.100	NA	0.4738	288	54.6	484	22.5	NA
84N (184.15)	12/93	NA	7.6	720	-71	ΝΑ	0.16	1.64	08.0	0.34	ΝA	0.162	NA	0.0021	132	8.89	374	20.0	NA
84O (203.1)	12/93	NA	7.2	290	26-	NA	0.17	1.51	3.70	0.33	NA	0.092	NA	0.0397	267	28.3	819	16.2	NA
840 (188.1)	12/93	Ν	NA	ΝΑ	NA	NA	0.13	2.83	00.00	0.5	NA	0.123	NA	0.0023	234	55.2	303	14.3	NA
a'oC = Degrees Celcius.	٠					$^{g'}$ ND = Not detected.	etected.												
b' su = Standard Units.						NS = Not sampled.	mpled.												

 $\begin{array}{l} b^{y} \; su = Standard \;\; Units. \\ \\ \omega \; mS/cm = Micro \; siemens \; per \; centimeter. \\ \\ \\ \omega \; mv = Millivolts. \end{array}$

 $^{e^{j}}$ mg/L = Milligrams per liter. $^{f_{i}}$ nM = Nano meters.

 N NS = Not sampled. $^{\gamma}$ NA = Not analyzed. $^{\gamma}$ BLQ = Below limit of practical quantitation. N Samples collected with cone-penetrometer apparatus at indicated elevation in mean sea level.

2.4.2 Dissolved Oxygen

DO concentrations were measured at 15 groundwater sampling locations in November 1998. Table 5 summarizes DO concentrations measured at groundwater monitoring locations at Site FT-002 since December 1993. Figure 6 presents isopleth maps of DO at the site in August 1995 and November 1998. Comparison of Figures 2 and 6 shows that the BTEX plume core area at Site FT-002 continues to be essentially anaerobic. In fact, DO concentrations measured in November 1998 are similar to or lower than concentrations detected in August 1995. However, the DO levels measured at wells 44-PLT-W1 and 45-PLT-W1 are reversed from those measured in August 1995, suggesting that results were associated with the wrong well during one of the sampling events.

The correlation between depleted DO and elevated BTEX concentrations is a strong indication that aerobic biodegradation of the BTEX compounds has occurred, and continues to occur, at the site. The greatest aerobic activity is expected to occur at the upgradient perimeter of the source area and along the fringes of the plume, because these are areas where BTEX-contaminated groundwater mixes with groundwater containing higher concentrations of DO.

2.4.3 Nitrate + Nitrite

Concentrations of nitrate + nitrite (as nitrogen) were detected at 6 of the 15 locations sampled in November 1998. Nitrate + nitrite results measured at groundwater monitoring locations in November 1998 are presented on Table 5. Both the EE/CA (Parsons ES, 1995) and the first update sampling addendum (Parsons ES, 1997) stated that sampling results for nitrate indicated that dissolved BTEX was biodegrading via the microbially mediated processes of denitrification and/or nitrate reduction. Most of the November 1998 nitrate data was collected in the plume area, and the concentrations were generally less than 0.1 mg/L, supporting the continued depletion of nitrate in the plume area due to use of nitrate as an electron acceptor to biodegrade BTEX. The nitrate concentrations detected at 45-PLT-W1 (0.63 mg/L) and MW-02-43 (12.8 mg/L) suggest that nitrate concentrations cross-gradient and upgradient from the plume were higher than in the plume core in November 1998. However, the data are insufficient to confirm that this was the case.

2.4.4 Ferrous Iron

Ferrous iron concentrations were detected at 11 of the 15 locations sampled during the November 1998 sampling event. Table 5 lists ferrous iron concentrations measured at site groundwater monitoring locations in November 1998. Figure 7 presents isopleth maps showing the August 1995 and November 1998 distributions of ferrous iron in groundwater. Comparison of Figures 2 and 7 indicate that areas with elevated total BTEX concentrations continued to have elevated concentrations of ferrous iron. For example, the highest ferrous iron concentrations of 12.0 and 15.0 mg/L were detected in MW-310 and MW-02-019, respectively; these monitoring wells also evidenced the highest BTEX concentrations during the November 1998 sampling event (Figure 2). The ferrous iron concentrations measured in November 1998 were generally similar to or slightly greater than the April 1995 concentrations, suggesting that ferrous iron was

elevated in the plume core area. An exception occurred at MW310, where the 1998 ferrous iron concentration (12.0 mg/L) was less than the 1995 concentration (15.3 mg/L).

Studies suggest that the reduction of ferric iron to ferrous iron cannot proceed without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993); therefore, the continued presence of ferrous iron strongly indicates that ferric iron continues to be used as an electron acceptor at the site during biodegradation of BTEX compounds.

2.4.5 Sulfate

Sulfate concentrations were detected at 13 of the 15 locations sampled in November 1998. Results for sulfate analyses performed at groundwater monitoring locations at FT-002 are summarized on Table 5. An isopleth map for the November 1998 sulfate results is provided on Figure 8. Comparison of Figures 2 and 8 indicates that the areas with the highest total BTEX concentrations continue to have depleted sulfate concentrations. Sulfate concentrations measured in November 1998 are similar to the August 1995 concentrations, with no apparent increasing or decreasing trends. The correlation of depleted sulfate concentrations with the highest BTEX concentrations provides strong evidence that anaerobic biodegradation of the BTEX compounds continues through the microbially mediated process of sulfate reduction.

2.4.6 Methane

Methane concentrations were detected at 12 of 14 locations sampled for methane in November 1998. Methane concentrations measured in Site FT-002 groundwater samples collected since December 1993 are presented in Table 5. Figure 9 presents isopleth maps for August 1995 and November 1998 methane data. In areas with total BTEX concentrations greater than 50 μ g/L, methane concentrations ranged from 0.02 mg/L to 0.80 mg/L. The methane concentrations measured in 1998 are similar to those measured in August 1995, with no apparent increasing or decreasing trends. The relationship between the methane and BTEX plumes can be observed through comparison of Figures 2 and 9. Elevated methane concentration have been detected outside of the BTEX plume as well. However, the continuing presence of concomitant BTEX and methane plumes at the site is a strong indication that anaerobic biodegradation of the BTEX compounds is continuing at the site through the microbially mediated process of methanogenesis.

2.5 Biodegradation of Chlorinated Solvents

At Site FT-002, the occurrence of sulfate reduction, methanogenesis, and low ORPs in the core of contaminant plume indicate that redox conditions are suitable for reductive dehalogenation of CAHs to occur. TCE daughter products are present at relatively high concentrations. *cis*-1,2-DCE (a daughter product of the reductive dehalogenation of TCE) is present more frequently and at higher concentrations than any other CAH at the site (Table 4). The presence of high concentrations of *cis*-1,2-DCE in association with low concentrations of *trans*-1,2-DCE in site groundwater provides further evidence of reductive dehalogenation, because the *cis* isomer is

preferentially produced when TCE is reductively transformed. VC has continuously represented approximately 7 to 10 percent of the total dissolved chlorinated ethene concentration in site groundwater; therefore, reductive dehalogenation of *cis*-1,2-DCE to VC also is occurring. The relatively high ratio of *cis*-1,2-DCE to VC indicates that the groundwater system is not sufficiently reducing to reductively transform all of the DCE to VC.

2.5.1 Ethene

Ethene is produced when VC is reductively dehalogenated. Dissolved ethene concentrations were detected in only 2 of the 15 groundwater samples collected in November 1998 (Table 5). Each of the detected concentrations was 0.002 mg/L. Ethene previously had been detected in groundwater samples from multiple well/point locations from 1993 to 1996 at concentrations ranging up to 0.71 mg/L at location 84D within the general source area (Table 5, Figure 1). The decreased frequency of ethene detection suggests that groundwater redox conditions are becoming less reducing over time, inhibiting the reductive transformation of VC to ethene.

2.5.2 Chloride

Chloride concentrations were measured in groundwater samples collected in November 1998 (Table 5). Chloride is a byproduct of the biodegradation of chlorinated solvents. The November 1998 chloride concentrations detected in seven groundwater samples that contained more than 100 µg/L of total CAHs ranged from 2.75 mg/L to 78.4 mg/L, and averaged 24.5 mg/L. Conversely, chloride concentrations detected in eight samples that contained less than 100 µg/L of total CAHs ranged from 8.96 mg/L to 115 mg/L, and averaged 49.2 mg/L. Upgradient chloride concentrations detected in groundwater during previous sampling events at wells MW-02-026 and -027 have ranged from 84.7 to 144 mg/L. Therefore, the background chloride concentration appears to mask any increase in chloride that may have occurred as a result of chlorinated solvent degradation. Instead, the presence of biodegradation daughter products (cis-1,2-DCE, VC, and ethene) serve as better indicators of CAH biodegradation.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Results from the long-term groundwater monitoring conducted during November 1998 continue to support the occurrence of intrinsic bioremediation of dissolved BTEX and CAHs at Site FT-002. The combined effects of LNAPL recovery, bioventing with SVE, and natural attenuation in the source area appear to be effectively decreasing dissolved BTEX concentrations in this area. As a result, the dissolved BTEX plume appears to have become detached from the source area. LTM data suggest the BTEX plume has expanded toward the southeast since 1993; however, more recent data indicate that the plume has achieved a steady-state condition. Continued remediation of the BTEX source should cause the plume to diminish in the future.

Geochemical natural attenuation indicator parameter data collected in November 1998 indicate that aerobic and anaerobic natural attenuation processes are continuing to degrade dissolved BTEX in an uninterrupted fashion. Concentrations of electron

acceptors (DO, nitrate, and sulfate) remain relatively depleted in the plume core area, and concentrations of metabolic byproducts (ferrous iron and methane) in the plume area continue to be elevated. Apart from increasing ferrous iron concentrations in some areas, significant increasing or decreasing trends in concentrations of these indicator parameters are not apparent.

Bioplume II model PLATPRD, used to assess the effects of reducing the contaminant source by 20 percent, predicted that the BTEX plume would recede nearly 800 feet by year 2003 (Parsons ES, 1995). The maximum predicted dissolved BTEX concentration in 2003 was 5,300 μ g/L. The maximum measured concentration in November 1998 was 3,046 μ g/L. However, the well in which the maximum concentration was detected in 1993 (MW-02-014) has not been sampled since. It is conceivable that significant recession of this plume will occur during the next several years given the substantial reduction of the contaminant source that appears to have occurred. However, it should be noted that the Bioplume II model was constructed before the downgradient extent of the BTEX plume was fully defined. Therefore, the model may not have accurately predicted the fate and transport of this plume, and comparison of observed and simulated conditions may not be appropriate.

Similar to BTEX, dissolved CAH concentrations in the source area have decreased substantially over time. Although the CAH plume appears to have expanded toward the southeast since 1993, the available data are insufficient to evaluate current plume dynamics with certainty. CAH plume dynamics are difficult to evaluate due to the irregular or inconsistent sampling of downgradient monitoring locations. In particular, the downgradient extent of the TCE plume (Figure 3) was not defined in 1993, as the furthest downgradient monitoring location (MW-02-043) had an elevated TCE concentration of 373 μ g/L. Subsequently, this location was not sampled in 1995 or 1996; but had a significantly elevated TCE concentration of 2,880 μ g/L when sampled in November 1998. Therefore, the CAH plume appears to be expanding downgradient, but to what extent cannot be determined.

The presence of anaerobic, reducing conditions throughout most of the plume area, combined with the presence of DCE, VC, and ethene, support the observation that reductive dehalogenation is the dominant biodegradation process working to transform CAHs in groundwater. However, the high concentrations of *cis*-1,2-DCE relative to VC and ethene indicate that the groundwater is not sufficiently reducing to transform the majority of the DCE to less-chlorinated compounds. In addition, the anaerobic conditions that prevail throughout much of the plume indicate that aerobic degradation of DCE and VC is not a major attenuation process at this site.

Additional LTM events should include confirmatory sampling of downgradient well MW-02-043, where 2,880 μ g/L of TCE was detected in November 1998. In addition, wells that are located further downgradient and crossgradient should be sampled to assess the extent and migration of this contamination, as well as for other potential sources of CAHs. These location should include, at a minimum, 68PLT21, 69PLT21, 39PLT16, 62PLT20, 63PLT20, 37PLT15, and 38PLT15. In addition, sampling of locations 32PLT12, 33PLT12, 34PLT12, and 35PLT13 along the plume axis will aid in evaluating the evolution of the CAH plume.

4.0 REFERENCES

- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In R. Mitchell, editor, *Environmental Microbiology*, Wiley-Liss, New York, New York.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Groundwater Environment. *Environmental and Geological Water Science*, 16.
- Godsey, E.M., 1994, Microbiological and geochemical degradation processes, In: Symposium on Intrinsic Bioremediation in Ground Water. Denver, CO. August 30 September 1, 1994, p.35-40.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- Lovley, D.R., F.H. Chapelle, and J.C. Woodward. 1994. Use of dissolved H₂ concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science and Technology, v. 28, no. 7., p. 1205-1210.
- Norris, R.D., Hinchee, R.E., Brown, R., McCarty, P.L, Semprini, L., Wilson, J.T., Kampbell, D.H., Reinhard, M., Bouwer, E.J., Borden, R.C., Vogel, T.M., Thomas, J.M., and Ward, C.H., 1994, Handbook of Bioremediation: Lewis Publishers, Inc., 257 p.
- OHM Remediation Service Corporation, 1996, Draft and Supplemental Technical Reports for Ramp Geoprobe Sampling and Analysis, Plattsburgh Air Force Base, New York. Prepared for Air Force Center for Environmental Excellence, Brooks AFB, Texas, US Air Force Contract F41624-94-D-8106, May.
- Parsons Engineering Science, Inc. (Parsons ES), 1995, Intrinsic Remediation Engineering Evaluation/Cost Analysis for the FT-002 Site, Plattsburgh Air Force Base, New York. Prepared for Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks AFB, Texas, US Air Force Contract F41624-92-D-8036, April.
- Parsons ES, 1997, Addendum Intrinsic Remediation Engineering Evaluation/Cost Analysis for the FT-002 Site, Plattsburgh Air Force Base, New York. Prepared for Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks AFB, Texas, US Air Force Contract F41624-92-D-8036, March.

- Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry: John Wiley & Sons, New York.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site. *Geomicrobiology Journal*, 8:225-240.

APPENDIX A 1998 ANALYTICAL DATA

Contract # 68-C-98-138

December 10, 1998

Dr. Don Kampbell

12-21-1998 9:03AM

National Risk Management Research Laboratory Subsurface Protection and Remediation Division

U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: Dr. Dennis Fine

Dear Don:

As requested in Service Request # SF-0-30, headspace GC/MS analysis of 16 water samples from Plattsburg for chlorinated volatiles was completed. The samples were received on November 23, 1998 and analyzed on December 4-5, 1998. RSKSOP-148 (Determination of Volatile Organic Compounds in Water by Automated Headspace Gas Chromatography/Mass Spectrometry (Saturn II Ion Trap Detector) was used for this analysis.

An internal standard calibration method was established for 15 compounds. The standard curves were prepared from 1.0 to 2000 ppb. The lower calibration limits were 1.0 ppb.

A quantitation report for the samples, lab duplicates, field duplicates, QCs, standards and lab blank is presented in tables 1.

If you should have any questions, please feel free to contact me.

Sincerely,

John Allen Daniel

xc: R.L. Cosby

G.B. Smith

J.L. Seeley 🍂

Table I. Quantitative Report for S.R. # SF-0-30 from Plattsburg.

Originator = D. Kampbell Concentration ppb

Date analyzed = 12/4-5/98

	MW-02-007
2	
	İ
	-
MW-02-043 MW	≥
Field Dup 1/5 Dil	
9:	
	ŀ
ļ	- 1
	-1
	ı
	ı
	ı

 QC12048.MSQ
 QC1204C.MSQ
 QC1204C.MSQ
 BL1204A.MSQ

 200 ppb
 20 ppb
 200 ppb

Q	ą	Q	Q	Q	Š	QN	QN	Ş	Q	SNO.	QN	S	Q	QN
177	212	192	220	199	193	208	191	216	180	182	200	180	189	661
22.1	23.8	21.2	23.2	19.5	19.9	23.3	22.7	18.2	20.2	21.2	20.2	18.4	18.8	18.0
187	214	204	225	208	209	205	193	228	181	183	202	186	188	205
VINYL CHLORIDE	1,1-DICHLOROETHENE	T-1,2-DICHLOROETHENE	1,1-DICHLOROETHANE	C-1,2-DICHLOROETHENE	CHLOROFORM	1.1,1-TRICHLOROETHANE	CARBON TETRACHLORIDE	1,2-DICHLOROETHANE	TRICHLOROETHENE	TETRACHLOROETHENE	CHLOROBENZENE	1,3-DICHLOROBENZENE	1.4-DICHLOROBENZENE	1,2-DICHLOROBENZENE

ND » None Detected ... * Below Calibration Limit(1.0 ppb) **** * Above Calibration Limit(2000 ppb) OC = Quality Control Std Dup = Duplicate Dii = Dilution

Date received -11/23/98

Ref: 98-MB22 Contract# 68-C-98-138 December 1, 1998

Dr. Don Kampbell National Risk Management Research Laboratory Subsurface Protection and Remediation Division U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: Dr. D. Fine Down

Dear Don:

Please find attached the analytical results for Plattsburgh AFB, Service Request SF-0-30 requesting the analysis of monitoring well samples to be analyzed for MTBE, benzene, toluene, ethylbenzene, p-, m-, and o-xylene, 1,3,5-, 1,2,4-, and 1,2,3-trimethylbenzene, and total fuel carbon. I received your 16 samples November 23, 1998 in capped, lead lined 40 mL VOA vials. The samples were analyzed on November 30, 1998. Samples were stored at 4°C until analyzed. All samples were acquired and processed using the Millennium data system. A 5 point (1-1000 ppb) external calibration curve was used to determine the concentration for all compounds.

RSKSOP-133 "Simultaneous Analysis of Aromatics and Total Fuel Carbon by Dual Column/Dual Detector Gas Chromatography in Ground Water Samples" was used for these analyses. Autosampling was performed using a Dynatech-Precision autosampler in-line with a Tekmar LSC 2000 sample concentrator.

Sincerely,

Mark Blankenship

xc: R.L. Cosby

G.B. Smith

J.L. Seeley #

ManTech Environmental Research Services Corporation

Units = ng/ml Analyst M. Blankenship

Analyses for Dr.Kampbell

SAMPLE NAME	MTBE	BENZENE	MTBE BENZENE TOLUENE ET	IHYLBENZENE PXYLENE M-XYLENE O-XYLENE 1,3,3-1MB	PATEENE	IPAT LENE	O-AT LENE				
20 PPB QA\QC	22.1	18.5	19.5	20.7	20.8	21.0	20.0	23.1	22.0	18.1	₩
10 PPB STD	9.3	8.3	0.6	9.7	9.1	9.8	10.3	9.5	9.0	8.6	ΑN
WW-02-005	2	2	9	2	£	2	2	£	2	£	Q
VW-02-005 LAB DUPLICATE	2	2	9	Q	S	Q	Ş	2	2	£	2
WW-02-006	2	2	2	2	2	ВГО	2	2	2	3	9
VW-02-007	2	2	2	2	S	BLO	Q	Q	2	2	2
WW-02-075	2.1	6.7	41.1	727	616	1330	78.0	45.5	137	4.4	2230
WW-02-017	2	2	9	2.2	2.0	3.7	2	2	2	2	124
WW-02-021	2	2	9	2	오	<u>Q</u>	9	2	2	2	2
WW-02-022	2.5	1.1	9	9	2	2	Q	Q	2	2	74.0
WW-02-040	BCO	2.7	9	9	2	2	2	1.3	2	2	92.6
WW-02-041	BLO	36.3	9	2	2	9.0	Q	4.2	0.9	운	5 2
VW-02-042	2	66.7	9	2	2	2	Q	2	9	2	828
VW-02-043	2	8.1	2	2	2	Q	Q	2	2	2	571
WW-306	9	8.0	9	6.3	2	Q	QN	2	₽	2	48.4
MW-310	2.0	123	222	383	308	422	125	58.9	168	75.5	2810
WW-7FT W-310	D B	170	255	577	550	1080	414	202	515	8	6330
WV-44-FLT-W1	2	2	2	B.O.	J.	BLQ	8	2	2	2	2
WW-45-PLT-W1	2	2	9	2	2	2	Q	2	2	2	2
1 PPR STD		6.0	6.0	6.0	6.0	9.0	1.0	6.0	6 .0	6.0	¥

Ref: 98-AZ31 68-C-98-138

December 3, 1998

Ms. Don Kampbell National Risk Management Research Laboratory Subsurface Protection & Remediation Division U.S. Environmental Protection Agency P.O. Box 1198 Ada, OK 74820

Dear Don:

As requested in Service Request #SF-0-30, gas analysis was performed for methane, ethylene and ethane on samples received from Plattaburgh AFB. The samples were received on November 23,1998, and analyzed on December 1, 1998. Calculations were done as per RSKSOP-175. Analyses were performed as per RSKSOP-194.

If you have any questions concerning this data, please feel free to contact me.

Sincerely,

Amy Q. Hus Amy Q. Zhao

R.L. Cosby xc:

G.B. Smith

J.L. Seeley 34 6-55

G. Sewell

³rinted 12/03/98 SF-0-30

Originator: D. Kampbell Site: Plattsburgh AFB

Analyst: A. Zhao

Samples Received 11/23/98

Samples Analyzed 12/01/98

Sample	Methane ppm (Gas)	Methane ppm mg/L(Water)	Ethylene ppm (Gas)	Ethylene ppm mg/L(Water)	Ethane ppm (Gas)	Ethane ppm (Water)
00 ppm CH4	1.03E+02	~	ww.			
100 ppm C2H4	**	~	1.07E+02	~	nú	~
100 ppm C2H6	**		1.07 E T UZ	~	#*	~
IP. Helium Blank	~	**		~	1.05E+02	~
.ab Blank	~	**	~	**	~	**
AVV-02-005	_	***	~	**	~	中中
/IVV-02-006	~		~	**	~	**
/W-02-007	~	0.090	~	**	~	*
/W-02-017	~	0.108	~	- **	~	**
/W-02-075	~	**	· · ~	**	_	**
	~	0.484	~	0.006	_	0.000
/W-02-075 Lab Dup	~	0.467	~	0.006	-	0.002
/IVV-02-021	~	0.026	~	**	~	0.002
/W-02-022	~	0.242	~.	**	~	**
/W-02-040	~	0.040		**	~	**
/IVV-02-041	~	0.608	-	••	~	冷放
/IW-02-042	~	0.799	-		~	0.002
/IW-02-042 Field Dup	~	0.814	~	*	~	**
000 ppm CH4	1.08E+03	0.01 4 ~	**		~	**
/W-02-043	~			~	**	~
1W-02-044	~	0.002	~	**	~	**
/W-7' W- of 310	-		~_	**	~	**
1W-02-306	~	0.020	~'	• .	~	**
1W 310	~	0.162	~	**	~	**
1W 310 Lab Dup	~	0.467	~	0.363	~	**
1W -45 PLT W1	~	0.456	~	0.372	~	**
	~	**	~	**	_	**
W -45 PLT W1 Field Dup	~	**	~	**	-	**
0 ppm CH4	1.02E+01	~	**	~	~	**
0ppm C2H4	**	~	9.60E+00	-	**	~
0 ppm C2H6	**	~	**	~		~
				~	9.70E+00	~
ower Limit of Quantitation	10.0	0.001	10.0	0.003	10.0	0.002

nits for the samples are mg/L dissolved in water. nits for the standards are parts per million.

denotes None Detected.
denotes Below Limit of Quantitation.
denotes Not Applicable.

Ref: 98-SH45 Contract # 68-C-98-138

November 30, 1998

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820 0.

THRU: D.D. Fine

Dear Don:

Attached are TOC results for a set of 16 Plattsburgh samples submitted November 23, 1998 under Service Request #SF-0-30. Sample analysis was begun November 30, 1998 and completed November 30, 1998 using RSKSOP-102.

Blanks, duplicates, AQC samples were analyzed along with your samples, as appropriate, for quality control. If you have any questions concerning this data, please feel free to ask me.

Sincerely,

Sharon Hightower

1_ __

xc: R.L. Cosby

G.B. Smith

J.L. Seeley

KAMPBELL PLATTSBURGH LIQUIDS SF-0-30 Received 11/23/98 Analyzed 11/30/98 by Sharon Hightower

SAMPLE	% TOC
MW-02-005 MW-02-006 MW-02-007 MW-02-017 MW-02-021 MW-02-022 MW-02-040 MW-02-041 MW-02-042 MW-02-043	1.26 .624 1.11 2.42 3.05 4.05 1.80 9.44 4.66
DUP MW-02-075 WP39 MW-7 MW-44 MW-45 MW-306 MW-310 5 MG/L	4.28 4.33 4.51 69.8 6.59 1.12 .760 1.50 12.7 4.40

₩P39 std. t.v.=76.0 +/-7.60

December 9, 1998 Ref: 98-LP55/lp 98-RJK7/lp Contract # 68-C-98-138

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74821-1198

THRU: D.D. Fine

Dear Don:

Attached are inorganic results for a set of 16 samples from Plattsburgh AFB, NY, submitted to MERSC under Service Request # SF-0-30. The samples were received November 23 and were analyzed November 24, 1998. The methods used for these samples were Lachat FIA methods 10-107-06-1-A for ammonia and 10-107-04-2-A for nitrate + nitrite and Waters capillary electrophoresis method N-601 for chloride and sulfate.

Quality assurance measures performed on this set of samples included spikes, duplicates, known AQC samples and blanks.

If you have any questions concerning this data, please feel free to contact me.

Sincerely,

I anda Donnistan

Robert I Kinsey

J.L. Seeley

Page 1

Plattsburgh AFB, NY Don Kampbell S.R. # SF-0-30

Rec'd 11-23-98 Analyzed 11-24-98

R.J. Kinsey: NO2+NO3, NH3

L. Pennington: CI, SO4

SAMPLE	NO ₂ +NO ₃ (N)	NH ₃ (N)	Cl.	SO ₄ ²
, de tit de titue	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			And Annual Control of the Control of	
MW-02-005	<0.10	<0.10	38.7	17.1
MW-02-006	<0.10	0.13	115	23.7
MW-02-007	<0.10	0.26	11.9	7.62
MW-02-075	(<0.10) (<0.10)		107	19.6
MW-02-017	1.27	<0.10	14.0	13.3
MW-02-021	1.02	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(8.96) (8.62)	(17.4) (17.0)
MW-02-022	<0.10	<0.10	19.6	15.3
MW-02-040	163	0.13	6.04	6.24
MW-02-041	0.53	<0.10	13.4	0.85
MW-02-042	<0.10	0.14	- 11.8	<0.50
MW-02-043	12.8	<0.10	2.75	15.2
MW-310	<0.10	2.49	78.4	<0.50
MW-306?	<0.10	0.17	52.4	14.9
MW-7' W of 310	<0.10	1.19	(7.14) (7.09)	(<0.50) (<0.50)
MW-44-PLT-W1	<0.10	<0.10	114	20.7
MW-45-PLT-W1	0.63	<0.10	71.6	17.8
Blank	(<0.10) (<0.10)	(<0.10) (<0.10)	< 0.50	<0.50
WPO39	1.04	0.83	10.7	59.3
WP039 T.V.	1.10	0.84	- + 10.8; + :	58.0
Check Std.	5.10	5.10	4.99	5.04
Check Std. T.V.	5.00	5.00	5.00	5.00
Spike Recovery	106%	106%	102%	100%

ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY ADA, OKLAHOMA

UNITED STATES

ENVIRONMENTAL PROTECTION AGENCY

		\$C	OURCE !!	Iteling	BAFB		_ DATE 1	7/98
ANALYSIS				T-00Z				
SAMPLE	TIME	Alkalinii mg/1	Fett mg/,	Suffice mg/	PH+,5			
MW-07-040	1130	160	< ,	<.1	6,1			
MW-02-041	1225	260	<.1	2.1	6.1			
MW-82-042	1200	160	0.5	١,١	6,1			
MW - 02 -007	1540	80	0.2	<.1	5, 8			
MW-02-006	1650	180	3.0	0,5	5.8			
MW-02-075	1700	146	7.0	0,2	5.9			
\$198 MW-02-021	1030	200	0,2	<.1	6,0	·		
MW-02-022	1100	220	0.7	<,1	5.9			
MW3670102-017	1145	180	<,1	<,1	6,4			
MW. 7Wof 310	14000	240	15.0	<.1	6,0			
MW 3067 07 7 N	1420	100	<.1	١, ١	5.8			
MW 310	14 40	220	12,0	2,1	5.9			
MW02-043	1545	160	0.2	<.i	5.9			
ligips 44PLTW1	0900	140	0.6	<,	6,0			
45 PLT W 1	0925	200	< , i	١,١	6,5			
MW02-005	1015	140	0.6	۷,١	5,9			
MW02-014	collec	red fl		product	only			
**************************************				<u> </u>				<u></u>
REMARKS								

Company		
Groundwate Monitoring Well No	MW07-005 on MW105 PlaTsburghAF8	
5[] SAMPLE EXTRACTION METHOD:	Platishungh a ra	
[] Bailer made of: Te	tion bailer	
[] Other, describe:		
Sample obtained is [X] GF	AB; [] COMPOSITE SAMPLE	İ
6[] ON-SITE MEASUREMENTS:		
Time 1010 1015		
Temp (°C) 19,9 19,9	Measured with	1
pH		1
Cond (uS/cm) 426 428 DO (mg/L) 1.0 0.0		
Redox (=V) -104 -110		
Salinity		
7[] SAMPLE CONTABLES (
SAVE LE CONTAINES (material, numb	er, size):	
Check-off		
[] EQUIPMENT CLEANED BEFORE US	E WITH	T
18:33 Cleaned (List):		
		l
2[] ROSSET DEPTH 48		
Measured with:	FT. BELOW DATUM	
WATER DEPTH 30.6 To Measured with:	C FT. BELOW DATUM	
3[] WATER-CONDITION BEFORE WELL	EVACUATION (Describe):	ĺ
	1011 CALM-	!
Odor:		
Other Comments		
4[] WELL EVACUATION:		
Method:		
Volume Removed:		
Observations: Turbidity	(clear slightly cloudy) very cloudy)	
Water lev	il (rose fell no channel	
Other com	14:22:	

Groundwater Sampling Record Monitoring Well No. WW 02-006

₹.	۸ د	AP.	7 =	EX	LS V	~	TON	ľλ	1=7	HO	D:
3		1.5	_=		\sim		101				

Bailer made of:	
Pump, type: Envirated	.h
 Other describe:	

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6[] ON-SITE MEASUREMENTS:

Time	1550	11555			Measured with
Temp (°C)	10.9	1 10.9	Ī		
рН		1	1		
Cond (µS/cm)		1788	1		1
DO (mg/L)	1.5	10,5			
Redox (mV)	1-143	1-160	1	1.	
Salinity			1		1

Check-off	EQUIPMENT CLEANED 3 Items Cleaned (EFORE USE WITH List):			· · · · · · · · · · · · · · · · · · ·
[]	PRODUCT DEPTH 41			FT. BELOW DAT	лм
	WATER DEPTH 28.9 Messured with		Toc	FT. BELOW DAT	MU
[]	Turbidity: Odor:	ORE WELL EVACUAT			
·[]	WELL EVACUATION: Method: Volume Remo	ved:	slightly cloudy	very cloudy)	

	•		•		· · · · · · · · · · · · · · · · · · ·
	Gro	oundwater Sampli	ng Record	11/10-12	id
	Menitori	ig Well No. MW-D	2-007	11/17/9	7 5
5.[]	SAMPLE EXTRACTION MI				
• •			•		
	[] Bailer made	of:	• <u> </u>	•	
	[] Pump, type	Enviratory			•
	[] Other, desc	ribe:			٠.
•	Sample obmined	TE TYT COAR ET	CO) (DOCTOR =		•
	ounpie demaile	is [X] GRAB; []	COMPOSITE SAM	PLE	
6[]	ON-SITE MEASUREMENTS	:	•		
Time	152011530) .	1 18	Accounted with	
Temp (*	c) 18,4 184				
pH Cond (u	8/				
DO (mg	570 1 577				•
Redox (
Salinity	= 1 - 72 -84				
7[]	SAMPLE CONTAINERS (E2	ragial aumbra rice			
	CO: 1: ALI 12-CO (E.2	:::: (nomber, 5122):			
					
Check-off					
[[]					
* 6 3	EQUIPMENT CLEANED	BEFORE USE WITH_		•	
	Items Cleaner	(LIST):	· · · · · · · · · · · · · · · · · · ·		
	1				
		1			
2[]	PRODUCT DEFIH 7 6			ET DET	W DATUM
•	Measured with	1:		- i. Dell	WILATUM
	W	2	TOC		
	WATER DEPTH 28.		100	FT. BELO	W DATUM
	Messured with	Ľ			
3[]	WATER-CONDITION BEI	OPE WELLENAME			·
•	Color	ORE WELL EVACU.	y MON (Decape):		
•	Turbiciry:				
					 ·
	Other Comme	72:		-	
4[]	7				
- []	WELL EVACUATION:	$\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}}}}} = \mathcal{F}_{\mathcal{F}}}}}}}}}}$			
•	Method:				
	Volume Remo Observations:				
- -	Oeservations:	Turbidity (clear	slightly cloudy	very cloudy)	
	•	Water level (rose Water odors:	ren no cusude)		
٠		Other comme25:		•	

Groundwater Sampling Record Monitoring Well No. MW 3071-1 CA-017 S[] SAMPLE EXTRACTION METHOD: \MW-02-017 PIANSburgh	
3 L1 SAMPLE EXTRACTION METHOD:	• • •
MW-02-017) Plaltsburgh	4 ER
1 Bailer made of	770
[] Pump, type: Enviroleth - Symmetsible pump [] Other, describe:	
[] Other, describe:	
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE	- 1
6[] ON-SITE MEASUREMENTS:	
Time 1/3.0/ /m	
Temp (°C) 9.1 Measured with 1 H	,4
pH AIK, 96100	5-180
Cond (us/cm) 398 IKON C	٠.0
DO (myL) 7.5	
17/93.1	ا ک
Salinity	1
7[] SAMPLE CONTAINERS (material, number, size):	1
Check-off [[] EQUIPMENT CLEANER REPORT TO THE PROPERTY OF THE	
A CONTROL CONTROL DISTRICT	
læns Clænæi (List):	-
	-
2[] PRODUCT DEPTH	
Measured with:FT. BELOW DATUM	(
WATER DEPTH 29,7' TOC	- 1
Measured with:FT. BELOW DATUM	,
MESTIFED WITH:	,
WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
Color:	_
Odor:	
Other Comments:	.
4[] WELL EVACUATION:	
Method:	
Volume Removed:	1
	į.
Observations: Turbidity (clear slightly cloudy very cloudy) Water level (rose fell no change) Water odom:	

	Group Monitoring V	ndwater Sampli Well No. <u>MVV O</u>	ng Record 2-075	11/17	198 .
5[] SAMPLE EXT	RACTION MET				•
ָנ () Other, describe	EMPIROT			
	ASUREMENTS:	[X] GRAB; []	COMPOSITE SAN	MPLE _.	
Time 16 % Temp (°C) 9, pH Cond (uS/cm) 77 b DO (mg/L) 0,3 Redox (mV) -126 Salinity	765			Measured with	
	NTAINERS (Easter	ial, number, size):_			
Check-off [] EQUIPME	NT CLEANED BE Items Cleaned (I	FORE USE WITH			
2[] PRODUCT	DEPTH 42 Measured with:	ı		FT. BI	ELOW DATUM
WATER D	EPTH 29,2 Measured with:	Toc		FT. BE	ELOW DATUM
3[] WATER-C	ONDITION BEFO Color: Turbidity: Odor: Other Comment		IATION (Describe	·):	
4[] WELL EV	ACUATION: Method: Volume Remove Observations:	Turbidity (clear	slightly cloud		ıdy)
			fell no change)		

Time Temp (°C) pH Cond (µS/cm DO (mg/L) Redox (mV) Salinity		Bailer made of Pump, type:_ Other, describle obtained in IREMENTS:	of:] COMPOSI	TE SAMPLE Measure	d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity		Pump, type:_ Other, describe obtained in the state of the	Master fi- be: 1017 10,1 504 0,2 + 40] COMPOSI		d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity		Pump, type:_ Other, describe obtained in the state of the	Master fi- be: 1017 10,1 504 0,2 + 40] COMPOSI		d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity	Samp I-SITE MEASU 1005 10.4 507 6,3	Other, described obtained in the state of th] COMPOSI		d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity	Samp I-SITE MEASU 10.5 10.4 	IREMENTS:				d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity	1005 10.4 0,3 0,3	0 2 10. 4	1017 10,1 504 0,2 H40			d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity	1005 10.4 0,3 0,3	0 2 10. 4	1017 10,1 504 0,2 H40			d with	
Time Temp (°C) pH Cond (µS/ca DO (mg/L) Redox (mV) Salinity	11005 10.4 2) 507 1 6,3	10 2 10.6 505 0:2 +4	10,1 10,1 504 0,2 H40):	Measure	d with	
Temp (°C) pH Cond (µS/cm DO (mg/L) Redox (mV) Salinity	1D.4 507 6,3 + 61	10. 4 505 0:2 +4	10,1 504 0,2 H40):	Measure	d with	
Temp (°C) pH Cond (µS/cm DO (mg/L) Redox (mV) Salinity	1D.4 507 6,3 + 61	10. 4 505 0:2 +4	10,1 504 0,2 H40):	Measure	d with	
pH Cond (µS/cm DO (mg/L) Redox (mV) Salinity [] SAM	=) 507 6,3 + 6)	505 0.2 +41):			
Cond (µS/cz DO (mg/L) Redox (mV) Salinity	0,3	0.2 +4	10.2):			
DO (mg/L) Redox (mV) Salinity SAL	0,3	0.2 +4	10.2):			
Redox (mV) Salinity [] SA) + 6	1+41	140):			· ·
Salinity SAI):			
[] SAI	MPLE CONTA	INERS (mar	erial, number, size):			
	MPLE CONTA	INERS (mar	erial, number, size):			
1[]			BEFORE USE WI (List):				
	wall -		- 1				
2[]	PRODUCT DE	PTH				FT. BELOW	DATUM
			1 TOC SalvasT			FT. BELOW	DATUM
3[]	WATER-CONT	DITTON BE	FORE WELL EVA	CUATION (I	ರಿಆರ್ಡಾ):		
							· · · · · · · · · · · · · · · · · · ·
							
		dor: the: Comme					· · · · · · · · · · · · · · · · · · ·
	.01	me" Anning	<u> </u>				
4[]	WELL EVACU	JATION:	•		•		
		lethod:		÷ .			
		olume Remo	ved:			·	
		bservations:	Turbidity (clea	r slight	cit cloudy)	very cloudy)	

Water odors:_____

	•			•		
		Gro	undwater Sampli	ng Dagond		10:00
-•		Monitoring	Well No. MWO	_A2.Z.		18198
5[]	SAMBLEE					T 91
211	SV'AILEE E	XTRACTION ME	THOD:	•		
		f 1 Dallan and				
		[] Bailer made				
		[] Pump, type:	Musierfla	<u> </u>		•
		[] Other, descri	oe:			-
	•	Samala abminut :	- 60 60 10 11			
•		Samble ocianies i	x[X] GRAB;[]	composite sa	MPLE	
6[]	ON-SITE M	EASUREMENTS:		. •	•	
		chance very er (12)	4		•	
Time	110	15 1 1052	1 6 5 1			
Temp (15 1 1050	1055		Measured with	
рН	(C) 10.	3 10.3	10.4			
Cond (u	(5/0-1)					
			1596			
DO (mg			0.1			
Redox (5 1-77	1-91			
Salinity						
411	.					
7[]	SAMPLE CO	MTANERS (E211	rial, number, siz=):			
				:		
•						
C೬ಕ್ಕು-ಂ <u>ಕ್</u>	•	•				
1[]						
- ()	EQUIPME	INI CLEANED B	efore use with_		· · · · · · · · · · · · · · · · · · ·	
1.		Itans Clemai (List):	· · · · · · · · · · · · · · · · · · ·		
		•				
	11. a # D					
2[]	well	DEFIN 32	/			
	. 2000			·	FT. I	SELOW DATUM
	,	Measured with:			· · · · · · · · · · · · · · · · · · ·	
	WATED	EPTH 4.2	Toc		•	
	· ALLEN E	Measured with:	100		FT. E	ELOW DATUM
		MERCHANTED MINE				
3[]	WATER	,UMULTUVI 2222	30777 7 77 20 1	·		· · · · · · · · · · · · · · · · · · ·
. • • •		Coio-	ORE WELL EVACUA	≀∏೦೫ (Dಆದಾಹಿ	;):	
		Turbiding				·~
		Other Comment	S			
4[]	Wei i ev	ACUATION:				
	17 July 15 V			*		
· .		Method:				
		Volume Remove				·
		Observations:	Turbidity (clear	slightly cloud	ly very clo	udy)
		•	Water level (rose Water odors:	zen no epande)	•	
						
			೦ಥನ ಲಾಹವಾನ:	· · · · · · · · · · · · · · · · · · ·		
			•			** *, *

X

	Gro	undwater Sampling Record	11/17/98
•	Monitoring	Well No. MW-07-040	11/17/98
5[]	SAMPLE EXTRACTION ME		,
	[] Bailer made		
	[] Pump, type:_	Masier flex	
	[] Other, descri	oe:	
•	Sample obtained i	s [X] GRAB; [] COMPOSITI	ESAMPLE
6[]	ON-SITE MEASUREMENTS:		•
Time	1115011156	11202	Messured with
Temp (*		9.6	MESURE WILL
pH			
Cond (us		778	
Redox (-10	0.1	
Salinity	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+182	
7[]	SAMPLE CONTAINERS (E22)	rial, number, size):	
6 5			
Check-o≘ ≀[]	FOLIDATE CLEANED D		
	Items Clement	efore use with List):	
2[]	well Product depth 20		
- ()	Measured with:		FT. BELOW DATUM
	WATER DEPTH 8,	05 ft	FT. BELOW DATUM
	Measured with:	,	1: BELOW DATUM
3[]	WATER COMPENSATION		
	Coint	ORE WELL EVACUATION (De	cribe):
	Turbidity:		
	~~~.		
	الشح المساهد	<u> </u>	
4[]	WELL EVACUATION:		
	Method:		
	Volume Remov	ed: 4 gal	(
	Observations:	Turbidity (clear ) slightly	cloudy very cloudy)
		Water level (rese fell no cha	nge)
		Water odors: Other comments:	•
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Gro Monitorin	undwater Sampling Record g Well AA W-02 - 04	
S[] SAMPLE EXTRACTION ME	THOD:	11/17/98
[ ] Bailer made [ ] Pump, type: [ ] Other, descri	Masterflex	
Sample octained	S [X] GRAB; [] COMPOSITES.	AMPLE
6[] ON-SITE MEASUREMENTS:		•
Time   13 1 5   13 20 Temp (°C)   9,6   9,7 pH	196	Mesured with
Cond (uS/cm)   6.6.4   6.6.4   DO (mg/L)   0.1   0.1   Redox (mV)   + 5.8   + 4.9   Salinity	1664	
7[] SAMPLE CONTAINERS (E225	rial, number, size):	
Check-off [ ] EQUIPMENT CLEANED B  Items Cleaned (	EFORE USE WITH	
2[] PRODUCT DEPTH 47 Measured with:		FT. BELOW DATUM
WATER DEPTH 7.9 5 Measured with:		FT. BELOW DATUM
Twbicity:Odor:	•	:):
Other Comments 4[] WELL EVACUATION:		
Method:  Volume Remove	i 6 and	
Observations:	Turbidity (clear slightly eloud Water level (rose fell no change) Water odors:  Other comments:	y very aloudy)

.

		Gro	undwater Samp	ling Record		•
		Monitorin	g Well No.MW -O	2 ~ 047.		
1	SAMPLE EX	CTRACTION ME			11/17	198
•	~~		.וחטט:	•		, , ,
		[] Bailer made	of:	•		
		[] Pump, type:	MasTer	Flex		
		[ ] Other, descri	ibe:			-
	•	Samula about d	: 55 on			<del>-</del>
	•	Semple ocialises	is [X] GRAB; []	COMPOSITE SA	AMPLE	
	ON-SITE ME	EASUREMENTS:	•			
		· .				•
Time	125	15 11250	112561		Measured with	7
Temp (	C) 10.	1 10.0	110,01			1
pH Cond (2	19/21 1 7 7				1	1
DO (mg			1386			1
Redox (			10,1			1
Salinity		·	1-38			
		NTAINERS (E2L	enal, number, size):			
	•	MIANES (EE	=====, siz=):			
	•					
	•	ENT CLEANED B	BEFORE USE WITE			
	•		BEFORE USE WITE			
	EQUIPME	ENT CLEANED E	BEFORE USE WITE (List):			
	EQUIPME Wy/	ENT CLEANED E	BEFORE USE WITE (List):			
	EQUIPME	ENT CLEANED E  Rems Cleaned  DEPTH 6	BEFORE USE WITE (List):		FT	BELOW DATUM
	EQUIPME W// P <del>rodu</del> ct	ENT CLEANED E Items Cleaned  T DEPTH 6 Measured with	BEFORE USE WITE (List):		FT.	BELOW DATUM
	EQUIPME W// P <del>rodu</del> ct	ENT CLEANED E Items Cleaned  T DEPTH 6 Measured with	BEFORE USE WITE (List):			
	EQUIPME W// P <del>rodu</del> ct	ENT CLEANED E Items Cleaned  T DEPTH 6 Measured with	BEFORE USE WITE (List):  3  1  1  1  1  1  1  1  1  1  1  1  1			BELOW DATUM
	EQUIPME  Well  PRODUCT  WATER D	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  DEPTH 7.2  Measured with:	BEFORE USE WITE (List):  3 ' LZ ' TOC		FT.	
1	EQUIPME  Well  PRODUCT  WATER D	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  Measured with:	BEFORE USE WITE (List):  3  1  2	UATION (Describ	FT.	
1	EQUIPME  Well  PRODUCT  WATER D	ENT CLEANED E Items Cleaned  T DEPTH 6 Measured with: Measured with: CONDITION BEF	BEFORE USE WITE (List):  3  1  2  7  ORE WELL EVACE	IUATION (Descib	FT.	
	EQUIPME  Well  PRODUCT  WATER D	ENT CLEANED E  Rems Cleaned  DEPTH 6  Measured with:  Measured with:  CONDITION BEFORE  Color:  Turbidity:	BEFORE USE WITE (List):  3  LZ I TOC  ORE WELL EVACE	UATION (Describ	FT.	
1	EQUIPME  Well  PRODUCT  WATER D	ENT CLEANED E  Rems Cleaned  DEPTH 6  Measured with:  Measured with:  CONDITION BEFORE  Color:  Turbidity:	BEFORE USE WITE (List):  3  1  2  7  ORE WELL EVACE	UATION (Describ	FT.	
1	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  DEPTH 7 1  Measured with:  CONDITION BEF  Color:  Turbidity:  Odor:  Other Comment	BEFORE USE WITE (List):  3  1  2  7  ORE WELL EVACE	UATION (Describ	FT.	
	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E Items Cleaned  DEPTH 6 Measured with: DEPTH 7 7 Measured with: CONDITION BEFO Color: Turbicity: Odor: Other Comment	BEFORE USE WITE (List):  3  1  2  7  ORE WELL EVACE	UATION (Describ	FT.	
	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E Items Cleaned  DEPTH 6 Measured with: DEPTH 7 7 Measured with: CONDITION BEFO Color: Curbicity: Odor: Other Comment ACUATION: Method:	SEFORE USE WITE (List):  3  1  2	UATION (Describ	FT.	
	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  CONDITION BEFORE  Color:  Turbicity:  Odor:  Other Comment  ACUATION:  Method:  Volume Remove	BEFORE USE WITE (List):  3  12  17  ORE WELL EVACTORS:	UATION (Describ	FT. )	BELOW DATUM
neck-off	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E Items Cleaned  DEPTH 6 Measured with: DEPTH 7 7 Measured with: CONDITION BEFO Color: Curbicity: Odor: Other Comment ACUATION: Method:	BEFORE USE WITE (List):  3  2	UATION (Describ	e):	BELOW DATUM
	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  CONDITION BEFORE  Color:  Turbicity:  Odor:  Other Comment  ACUATION:  Method:  Volume Remove	BEFORE USE WITE (List):  3  2	Slightly cloud	e):	BELOW DATUM
	EQUIPME  Well  PRODUCT  WATER D  WATER-C	ENT CLEANED E  Items Cleaned  DEPTH 6  Measured with:  CONDITION BEFORE  Color:  Turbicity:  Odor:  Other Comment  ACUATION:  Method:  Volume Remove	SEFORE USE WITE (List):  3  2	Slightly cloud	e):	BELOW DATUM

Turbidity:

Method:_

WELL EVACUATION:

4[]

Other Comments:

Volume Removed: Observations: T

Turbidity (clear

Water odors:______Other comments:_

Water level (rose fell no change)

slightly cloudy

TEPTH INTERVAL

very cloudy)

		Gro	undwater S g Well No. 4 L	ampling R	ecord - ?		11/19/9	8
5[]	SAMPLE EXTR			No	werl m.	arking		
	ĹĴ	Bailer made Pump, type: Other, descr	MacT	er flex				
•	Sar	npie obtained	is [X] GRAB	; [ ] COMP	POSITE SAN	MPLE		
e[]	ON-SITE MEAS	UREMENTS			•	•		
Time	10950	10955	11000 1	1	Ī	Messureci w	rith 1	
Temp (	(°C) 19.6	197	19.7 1					
pH		i	1	<u> </u>	<del>-</del>			
Cond (	ا ( <u>حاکت</u>	1695	1699		<u>-</u>			
DO (m	g/L) 0,3	10.2	10,1		<u>-</u>		<del> </del>	
Redox	(=V) 1-83	1-103	1-108	<del>i</del> -	<del></del>	···		
Salinin	/							
7[]	SAMPLE CONT	ANERS (E2	terial, number,	siz=):				•
	•				<del></del>		·	_
	<del></del>				<del></del>	<del></del>	<del></del>	_ `
				<del></del>			<del></del>	
Check-of	=		•					
1[]			BEFORE USE	WITH				
	·	الحت Cleaned	(Lis:):	·	····			
•	•		· ·		·			
	was					····	<del></del>	
2[]	well product D	F37# 39	} /		•			
- • •		Measured with		<del></del>			FT. BELOW DAT	UM .
•	•	Marrier Art	٠ <u></u>		<del></del>		· · · · · · · · · · · · · · · · · · ·	
	WATER DEF	та 6.7	L' TOC		ine Inch	PUCWELL		
			E G 20:000				FT. BELOW DATE	UM
							***	
3[]	WATER-CO	VDITTON BE	FORE WELL E	VACUATIO	N (Describe	) <u>.</u>		
•	(	Caior:			· · · · · · · · · · · · · · · · · · ·			
		ر التعاداتي:		<u> </u>			•	
	(	0dor:			•			
		Other Comme	:15:					
4[]	77							
761	WELL EVAC		•				entrance to the transfer of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th	
•		Method:		<del></del>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	٠ -
		Volume Remo Observations:	Turbidity (o Water level	(rose fell	ightly cloud no change)	y <b>v</b> e	ry cloudy)	·
	·		Water odor	resa: 2:				<del></del>

		•	Gro	ındwater Samp	ling Record	•	1.116168	
		•	Menitoring	Well No. 45 Pi	TWI - NO	well	11/19/98	
5[]	SAM	PLE EXTRA	CTION MET	THOD:	Note:	ir King	•	
		( )	Bailer made	nf.	•			
		[]	Pump, type:_	master fl	e x			
		• []	Other, descri	e:				
		Sam	ple obtained i	s [X] GRAB; []	COMPOSITE S	AMPLE		
6[]	ON-S	ITE MEASU	REMENTS:			• :	•	
}	Time Temp (°C)	10910	10915	109201		Messured	with	
ŀ	pH pH	1 11,4	111.4	111.4		<del>-</del>	<b>—</b>	
ļ	العمرة (بدي العمر)	683	1684	1685				
·	DO (mg/L) Redox (EV)	14,4	18.3	18,3				
Į	Salinity	1+177	1+185	<del> </del>		1 .		
7(1				·			<del></del>	
7[]	SALMI	LE CONTA	UNERS (Erze	erial, number, size):		<del></del>		
		<del></del>			<del></del>			
	ieck-off						-	_
	[] EQ		CLEANED E ens Cleaned	EFORE USE WITH	•			
		•		(55.)				
	No.	- الم		:				
2	[] - ***	<del>ODUCI</del> DE	24 24		one inch	puc	_FT. BELOW DATUM	
•		М	leasured with	<u> </u>				
	W	TER DEPI	= 6,1	Toc		•	_FT. BELOW DATUM	
			essured with					
3	[] WA	LTER-CONT	DITTON BEF	ORE WELL EVAC	UATION (Descri	ih-)•		
٠.		C	oior					
		4.0	ہے، دنائہ۔					
		. 0	the Commen	2:				
4	( ) WE	LL EVACU	I A TITONIO					
			ethod:					
			olume Remov					
		O	bservations:	Turbidity (clear Water level (ross	slightly clo	ze)	very cloudy)	
		•		Water odors:		<del></del>	<del></del>	
				೦ಥನ ರಂದಾವವನ		•		

Menitoring Well No. MW 310  SAMPLE EXTRACTION METHOD:  [] Bailer made of: [] Pump, type: MasTar \$\frac{1-e}{2}\$  [] Other, describe:  Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE  6[] ON-SITE MEASUREMENTS:	
[] Pump, type: Mas [er + 1-ex] [] Other, describe:  Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE	
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE	
·	
611 ON-SITE ACTA SIMPLEMENT	
6[] ON-SITE MEASUREMENTS:	
Time 13:23 pm 15:28 mm 13:33 pm	
[temp(c)   9.6   9.6   9.6	
pH Cond (#S/cm) 741 745 244	
DO (1)	
D. J. C.	
Salinity   -/02.7     c5.2   -/c5.2	
7[] SAMPLE CONTAINERS (material, number, size):	
Check-off  [[] EQUIPMENT CLEANED REFORE MET TITLE	
- Carrier of All MIN	4
Items Cleaned (List):	_
well	_
2[] PRODUCT DEPTH 41 FT. BELOW DATUM	ur
Measured with:	,7L
WATER DEPTH 10, 5' TOC	_
Messured with: Googrobe FT. BELOW DATUR	M
	· ·
3 ( ) WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
Color:	
Turbicity:	
	<del>:</del>
4[] WELL EVACUATION:	
Method:	
Volume Removed:	 
Observations: Turbidity (clear slightly cloudy very cloudy)  Water level (rose fell no change)  Water odors:	•
Other comments:	<b>-</b>
Turbicity:Odor:Other Comments:	<b>-</b> -

£ 24

			Gro	undwater S	nambuna.	Record				
			Monitorin	g Well No. M	w 306?	4/	1	2.45	•	7.
( )	SAMI	LE EXTRA	CTION ME	THOD:	30b	Nort	nor	310		
					200	•				
		[]	Bailer made	of:		•				
		Del 1	Pump, type:	of. <u> </u>	5.171,5	"Mas7	2,- FI e	x " ·		•
		[]	ರಿರ್ರೇ, ರವರಾ	ibe:						
		_							•	
		Samp	ie ocained	is [X] GRAI	B; [ ] CO	MPOSITE SA	MPLE			
I	0\1 C1	TT 1 CT . CT.	<b></b>			· ,		• *		
	0,4-31	TE MEASU	KEWEU12	•		•				
Time		2 '40 20	1 2521 20	17:00		·				
Temp (*	·C)			112:59 pm			Messur	ed with		
pH	<del></del>	9,5	1 4,5	1 9,5						
Cond (:	Sicol	4//	1	1 0 - 0						
DO (mg	77.		407	140B						
Redox (		0.3	10.2	10.2		! !				
Salinity		-127.2	1-13413	1-135.2						
		1	}			1				
		UIPMENT C	INERS (mai	BEFORE USE						
Check-0준 1 [ ]		UIPMENT C		BEFORE USE						
		UIPMENT C	LEANED :	BEFORE USE						
1[]	EQ:	UIPMENT C	CLEANED :	BEFORE USE (List):						
1[]	EQ:	UIPMENT C	CLEANED I	BEFORE USE (List):				FT. E	ELOW DA	TUM
1[]	EQ:	UIPMENT C	CLEANED:  The Cleaned  PTH 56  Pastred with	BEFORE USE (List):	WITH			FT. E	ELOW DA	TUM
1[]	EQ:	UIPMENT C	CLEANED:  The Cleaned  PTH 56  Pastred with	BEFORE USE (List):	WITH				·	<del></del>
1[]	EQ:	UIPMENT C	CLEANED:  The Cleaned  PTH 56  Pastred with	BEFORE USE (List):	WITH				ELOW DA	<del></del>
1[] 2[]	EQ PRO	UIPMENT OF ItE ME	CLEANED I	BEFORE USE (List):	WITH				·	<del></del>
1[] 2[]	EQ PRO	UIPMENT COND	CLEANED:  The S 6  Partied with  Experted with  EXPLICATION BER	BEFORE USE (List):	WITH		e):		·	<del></del>
1[] 2[]	EQ PRO	UIPMENT COND.  TER DEPT.  Me  TER-COND.	THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SERVICE WITH SERVICE WITH SERVICE WITH SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SER	BEFORE USE (List):  FORE WELL I	WITH		e):		·	<del></del>
1[] 2[]	EQ PRO	UIPMENT COND.  TER-COND.  Ter-Cond.	THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY O	BEFORE USE (List):  FORE WELL I	WITH		c):		·	<del></del>
1[] 2[]	EQ PRO	UIPMENT OF ItER DEPTERMENT COND. TER-COND. Co. Tu. Od.	CLEANED:  THE 56  PARTY OF MICH.  STREET WITH  PARTY OF THE CO.  TO ICH.  T	BEFORE USE (List):	WITH		e):		·	<del></del>
2[]	EQ PRO	UIPMENT OF ItER DEPTERMENT COND. TER-COND. Co. Tu. Od.	THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY OF THE SE PARTY O	BEFORE USE (List):	WITH		e):		·	<del></del>
1[] 2[] 3[]	EQI PRO	UIPMENT OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LESS OF LES	CLEANED I	BEFORE USE (List):	WITH		e):		·	<del></del>
1[] 2[] 3[]	EQI PRO	UIPMENT OF ItE ME TER DEPT. Me TER-COND Co Tu	CLEANED I	BEFORE USE (List):	WITH		e):		·	<del></del>
1[] 2[] 3[]	EQI PRO	UIPMENT OF ItE Me TER COND Co Od Od Od Me	CLEANED I	SEFORE USE (List):  FORE WELL I	VITH		e):		·	<del></del>
	EQI PRO	UIPMENT COLUMN TER DEPTEMENT TER-COND COLUMN OCT LL EVACUA Me Vo	CLEANED I	SEFORE USE (List):  FORE WELL I	WITH	ON (Decrib		FT. B	ELOW DA	<del></del>
1[] 2[] 3[]	EQI PRO	UIPMENT COLUMN TER DEPTEMENT TER-COND COLUMN OCT LL EVACUA Me Vo	CLEANED:  The Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the Second with the	FORE WELL I	WITH		<del>t</del> y		ELOW DA	<del></del>

L

			Grou Monitoring	ndwater San Well No	ipling I	Record We Si	ofmw 310	
5[]	LE EXTRA	TTON MET	HOD:	MW-7/N @F 310				
·		[] F	Bailer made o 'ump, type: Other, describ	MasTyr	f12;	<u> </u>		· ·
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE								
6[] ON-SITE MEASUREMENTS:								
Time		2.17 P.M	Z. ZSFM	2:30 PM		1 8	lessured with	
Temp (*	C)	/0.3	9.9	/c.c				
pН								
Cond (u	<u>_</u>	559	558	55 &				
DO (mg		٥,١	0,2	0,0				
Redox (	<u>=v)  </u>	-121.9	-124.2	-126.1		1		
Salinity						1		
Check-off 1[]		Itz					FT. BELOW	DATUM
	WA:	TER DEPT	E 11.5	TOC			FT. BELOW	DATUM
3[]	WA	Co Tu Od	ITTON BEF( ion) ac K rbidity:we C on ac Comment	erare	ACUATI	ON (Describe):		
4[]	WEI		:#oc:					
			lume Remov servations:	ed: 53-11 cle Turbidity (cle Water level (r Water odors: Other comme	ar ose fell	no change)	(very cloudy)	